--- library_name: transformers language: - tg license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Small Tajik results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Google Fleurs type: google/fleurs config: tg_tj split: None args: 'config: tg, split: test' metrics: - name: Wer type: wer value: 24.260635774157837 --- # Whisper Small Tajik This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.4141 - Wer: 24.2606 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 2.7687 | 1.0 | 79 | 0.5778 | 39.6568 | | 0.7193 | 2.0 | 158 | 0.3890 | 28.3568 | | 0.3659 | 3.0 | 237 | 0.3611 | 26.0636 | | 0.2021 | 4.0 | 316 | 0.3629 | 25.1068 | | 0.1099 | 5.0 | 395 | 0.3740 | 25.3044 | | 0.0597 | 6.0 | 474 | 0.3887 | 24.3081 | | 0.0339 | 7.0 | 553 | 0.4005 | 24.6639 | | 0.0213 | 8.0 | 632 | 0.4082 | 24.3239 | | 0.0158 | 9.0 | 711 | 0.4131 | 24.2685 | | 0.014 | 10.0 | 790 | 0.4141 | 24.2606 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0