ahmedALM1221 commited on
Commit
9e24794
·
1 Parent(s): 1525a88

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +125 -0
README.md ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: convnextv2-tiny-1k-224-finetuned-eurosat-50
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: Skin_Dataset
19
+ split: train
20
+ args: Skin_Dataset
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.7762711864406779
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # convnextv2-tiny-1k-224-finetuned-eurosat-50
31
+
32
+ This model is a fine-tuned version of [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 1.2472
35
+ - Accuracy: 0.7763
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 16
56
+ - eval_batch_size: 16
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 64
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 50
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 1.9434 | 0.97 | 18 | 1.8549 | 0.2847 |
70
+ | 1.7722 | 2.0 | 37 | 1.6757 | 0.3661 |
71
+ | 1.5502 | 2.97 | 55 | 1.4652 | 0.4339 |
72
+ | 1.2595 | 4.0 | 74 | 1.1916 | 0.6068 |
73
+ | 0.9304 | 4.97 | 92 | 1.0282 | 0.6576 |
74
+ | 0.7333 | 6.0 | 111 | 0.8574 | 0.7051 |
75
+ | 0.6015 | 6.97 | 129 | 0.8427 | 0.6983 |
76
+ | 0.4617 | 8.0 | 148 | 0.7682 | 0.7458 |
77
+ | 0.3162 | 8.97 | 166 | 0.7453 | 0.7559 |
78
+ | 0.2249 | 10.0 | 185 | 0.7475 | 0.7661 |
79
+ | 0.1667 | 10.97 | 203 | 0.7677 | 0.7492 |
80
+ | 0.091 | 12.0 | 222 | 1.0114 | 0.7220 |
81
+ | 0.0783 | 12.97 | 240 | 1.0206 | 0.7186 |
82
+ | 0.0613 | 14.0 | 259 | 0.8466 | 0.7492 |
83
+ | 0.0703 | 14.97 | 277 | 1.1067 | 0.7119 |
84
+ | 0.0335 | 16.0 | 296 | 1.0117 | 0.7390 |
85
+ | 0.0171 | 16.97 | 314 | 0.9367 | 0.7525 |
86
+ | 0.0253 | 18.0 | 333 | 1.3196 | 0.7153 |
87
+ | 0.0201 | 18.97 | 351 | 1.0530 | 0.7525 |
88
+ | 0.0041 | 20.0 | 370 | 1.0523 | 0.7729 |
89
+ | 0.0154 | 20.97 | 388 | 1.1311 | 0.7661 |
90
+ | 0.0025 | 22.0 | 407 | 1.1477 | 0.7729 |
91
+ | 0.0036 | 22.97 | 425 | 1.1309 | 0.7627 |
92
+ | 0.002 | 24.0 | 444 | 1.1399 | 0.7729 |
93
+ | 0.0014 | 24.97 | 462 | 1.1543 | 0.7797 |
94
+ | 0.0011 | 26.0 | 481 | 1.1799 | 0.7763 |
95
+ | 0.0011 | 26.97 | 499 | 1.1579 | 0.7661 |
96
+ | 0.0009 | 28.0 | 518 | 1.1907 | 0.7627 |
97
+ | 0.0009 | 28.97 | 536 | 1.1878 | 0.7661 |
98
+ | 0.0008 | 30.0 | 555 | 1.1986 | 0.7661 |
99
+ | 0.0008 | 30.97 | 573 | 1.2051 | 0.7661 |
100
+ | 0.0007 | 32.0 | 592 | 1.2073 | 0.7661 |
101
+ | 0.0007 | 32.97 | 610 | 1.2156 | 0.7661 |
102
+ | 0.0007 | 34.0 | 629 | 1.2218 | 0.7627 |
103
+ | 0.0007 | 34.97 | 647 | 1.2173 | 0.7661 |
104
+ | 0.0006 | 36.0 | 666 | 1.2217 | 0.7729 |
105
+ | 0.0006 | 36.97 | 684 | 1.2272 | 0.7695 |
106
+ | 0.0006 | 38.0 | 703 | 1.2261 | 0.7763 |
107
+ | 0.0006 | 38.97 | 721 | 1.2305 | 0.7763 |
108
+ | 0.0006 | 40.0 | 740 | 1.2325 | 0.7763 |
109
+ | 0.0005 | 40.97 | 758 | 1.2362 | 0.7763 |
110
+ | 0.0005 | 42.0 | 777 | 1.2409 | 0.7763 |
111
+ | 0.0005 | 42.97 | 795 | 1.2422 | 0.7763 |
112
+ | 0.0005 | 44.0 | 814 | 1.2429 | 0.7729 |
113
+ | 0.0005 | 44.97 | 832 | 1.2434 | 0.7763 |
114
+ | 0.0005 | 46.0 | 851 | 1.2458 | 0.7763 |
115
+ | 0.0005 | 46.97 | 869 | 1.2468 | 0.7763 |
116
+ | 0.0005 | 48.0 | 888 | 1.2471 | 0.7763 |
117
+ | 0.0005 | 48.65 | 900 | 1.2472 | 0.7763 |
118
+
119
+
120
+ ### Framework versions
121
+
122
+ - Transformers 4.30.2
123
+ - Pytorch 2.0.1+cu118
124
+ - Datasets 2.13.1
125
+ - Tokenizers 0.13.3