Commit
·
9e24794
1
Parent(s):
1525a88
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: convnextv2-tiny-1k-224-finetuned-eurosat-50
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: imagefolder
|
17 |
+
type: imagefolder
|
18 |
+
config: Skin_Dataset
|
19 |
+
split: train
|
20 |
+
args: Skin_Dataset
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.7762711864406779
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# convnextv2-tiny-1k-224-finetuned-eurosat-50
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) on the imagefolder dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 1.2472
|
35 |
+
- Accuracy: 0.7763
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 5e-05
|
55 |
+
- train_batch_size: 16
|
56 |
+
- eval_batch_size: 16
|
57 |
+
- seed: 42
|
58 |
+
- gradient_accumulation_steps: 4
|
59 |
+
- total_train_batch_size: 64
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- lr_scheduler_warmup_ratio: 0.1
|
63 |
+
- num_epochs: 50
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 1.9434 | 0.97 | 18 | 1.8549 | 0.2847 |
|
70 |
+
| 1.7722 | 2.0 | 37 | 1.6757 | 0.3661 |
|
71 |
+
| 1.5502 | 2.97 | 55 | 1.4652 | 0.4339 |
|
72 |
+
| 1.2595 | 4.0 | 74 | 1.1916 | 0.6068 |
|
73 |
+
| 0.9304 | 4.97 | 92 | 1.0282 | 0.6576 |
|
74 |
+
| 0.7333 | 6.0 | 111 | 0.8574 | 0.7051 |
|
75 |
+
| 0.6015 | 6.97 | 129 | 0.8427 | 0.6983 |
|
76 |
+
| 0.4617 | 8.0 | 148 | 0.7682 | 0.7458 |
|
77 |
+
| 0.3162 | 8.97 | 166 | 0.7453 | 0.7559 |
|
78 |
+
| 0.2249 | 10.0 | 185 | 0.7475 | 0.7661 |
|
79 |
+
| 0.1667 | 10.97 | 203 | 0.7677 | 0.7492 |
|
80 |
+
| 0.091 | 12.0 | 222 | 1.0114 | 0.7220 |
|
81 |
+
| 0.0783 | 12.97 | 240 | 1.0206 | 0.7186 |
|
82 |
+
| 0.0613 | 14.0 | 259 | 0.8466 | 0.7492 |
|
83 |
+
| 0.0703 | 14.97 | 277 | 1.1067 | 0.7119 |
|
84 |
+
| 0.0335 | 16.0 | 296 | 1.0117 | 0.7390 |
|
85 |
+
| 0.0171 | 16.97 | 314 | 0.9367 | 0.7525 |
|
86 |
+
| 0.0253 | 18.0 | 333 | 1.3196 | 0.7153 |
|
87 |
+
| 0.0201 | 18.97 | 351 | 1.0530 | 0.7525 |
|
88 |
+
| 0.0041 | 20.0 | 370 | 1.0523 | 0.7729 |
|
89 |
+
| 0.0154 | 20.97 | 388 | 1.1311 | 0.7661 |
|
90 |
+
| 0.0025 | 22.0 | 407 | 1.1477 | 0.7729 |
|
91 |
+
| 0.0036 | 22.97 | 425 | 1.1309 | 0.7627 |
|
92 |
+
| 0.002 | 24.0 | 444 | 1.1399 | 0.7729 |
|
93 |
+
| 0.0014 | 24.97 | 462 | 1.1543 | 0.7797 |
|
94 |
+
| 0.0011 | 26.0 | 481 | 1.1799 | 0.7763 |
|
95 |
+
| 0.0011 | 26.97 | 499 | 1.1579 | 0.7661 |
|
96 |
+
| 0.0009 | 28.0 | 518 | 1.1907 | 0.7627 |
|
97 |
+
| 0.0009 | 28.97 | 536 | 1.1878 | 0.7661 |
|
98 |
+
| 0.0008 | 30.0 | 555 | 1.1986 | 0.7661 |
|
99 |
+
| 0.0008 | 30.97 | 573 | 1.2051 | 0.7661 |
|
100 |
+
| 0.0007 | 32.0 | 592 | 1.2073 | 0.7661 |
|
101 |
+
| 0.0007 | 32.97 | 610 | 1.2156 | 0.7661 |
|
102 |
+
| 0.0007 | 34.0 | 629 | 1.2218 | 0.7627 |
|
103 |
+
| 0.0007 | 34.97 | 647 | 1.2173 | 0.7661 |
|
104 |
+
| 0.0006 | 36.0 | 666 | 1.2217 | 0.7729 |
|
105 |
+
| 0.0006 | 36.97 | 684 | 1.2272 | 0.7695 |
|
106 |
+
| 0.0006 | 38.0 | 703 | 1.2261 | 0.7763 |
|
107 |
+
| 0.0006 | 38.97 | 721 | 1.2305 | 0.7763 |
|
108 |
+
| 0.0006 | 40.0 | 740 | 1.2325 | 0.7763 |
|
109 |
+
| 0.0005 | 40.97 | 758 | 1.2362 | 0.7763 |
|
110 |
+
| 0.0005 | 42.0 | 777 | 1.2409 | 0.7763 |
|
111 |
+
| 0.0005 | 42.97 | 795 | 1.2422 | 0.7763 |
|
112 |
+
| 0.0005 | 44.0 | 814 | 1.2429 | 0.7729 |
|
113 |
+
| 0.0005 | 44.97 | 832 | 1.2434 | 0.7763 |
|
114 |
+
| 0.0005 | 46.0 | 851 | 1.2458 | 0.7763 |
|
115 |
+
| 0.0005 | 46.97 | 869 | 1.2468 | 0.7763 |
|
116 |
+
| 0.0005 | 48.0 | 888 | 1.2471 | 0.7763 |
|
117 |
+
| 0.0005 | 48.65 | 900 | 1.2472 | 0.7763 |
|
118 |
+
|
119 |
+
|
120 |
+
### Framework versions
|
121 |
+
|
122 |
+
- Transformers 4.30.2
|
123 |
+
- Pytorch 2.0.1+cu118
|
124 |
+
- Datasets 2.13.1
|
125 |
+
- Tokenizers 0.13.3
|