ppo-LunarLander-v2 / config.json
akshay4's picture
Upload PPO LunarLander-v2 trained agent to HF hub
6b0858d
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7faaaeb2f160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faaaeb2f1f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faaaeb2f280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faaaeb2f310>", "_build": "<function ActorCriticPolicy._build at 0x7faaaeb2f3a0>", "forward": "<function ActorCriticPolicy.forward at 0x7faaaeb2f430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7faaaeb2f4c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faaaeb2f550>", "_predict": "<function ActorCriticPolicy._predict at 0x7faaaeb2f5e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faaaeb2f670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faaaeb2f700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7faaaeb2f790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7faaaeb97cf0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673596650436733111, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABq6uD1oARw/eF0jvgHtlb7cUyM9GNjmvQAAAAAAAAAAJvuRPVbFqT/4XdE+v17gvhrh2z1ONsI+AAAAAAAAAADmloC9zg8IP8qbUj1SZ7++A2Zxve1gBz4AAAAAAAAAAGaeCzykV3e7VI2xPC/TvzxPRqo8PmwiOwAAgD8AAIA/jamcvZQ8mj+U90O+tzWuvkfzM77imKq9AAAAAAAAAAAzXWG8BVnBPC/Sn71MgaW+AEO9OgWQ8rwAAAAAAAAAALMCBT3pVgU9Pv8XvSY/gr4ULA89vsnevQAAAAAAAAAAmhcCPS8IZz8UXqw8i2C+vgja2T3qXZk8AAAAAAAAAAAaSjU9LhFBP5IqIb5yeMe+WqHzPF5ucr0AAAAAAAAAAABIPDvJ0CM9+jv1vDDmq75IYsy84NUaPAAAAAAAAAAAAAPRPEoNMj8ekC09tYi5vhs7nz27o849AAAAAAAAAADNHEe83n20PzK2G78NaP68GsdCPMdFxD0AAAAAAAAAAEDAzT2BiBM/T18FvoAwpb7+6CI92SsPvAAAAAAAAAAA5vQBPZakdT99Gu66pfDjvmj2kT2hx5K9AAAAAAAAAAAz53S8SN21uhLX9bXhPoC+WDQCvS3/2z4AAIA/AAAAAJoDGLzl370/gdaJvdas+j0ZDiQ9qvxOPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4IPXLm0Eb0CUhpRSlIwBbJRL4IwBdJRHQJ65Ytg8bJh1fZQoaAZoCWgPQwglJNI2/mNyQJSGlFKUaBVL6GgWR0CeuZX0oSctdX2UKGgGaAloD0MIw0gvajeNcUCUhpRSlGgVS+loFkdAnrmz7yhBaHV9lChoBmgJaA9DCCh/944am25AlIaUUpRoFUvyaBZHQJ66OK+BYmt1fZQoaAZoCWgPQwgIBDqTtnNwQJSGlFKUaBVL8GgWR0CeupMUh3aBdX2UKGgGaAloD0MIvady2hNackCUhpRSlGgVS+1oFkdAnrq9m16VuHV9lChoBmgJaA9DCGLYYUx6JHBAlIaUUpRoFUvlaBZHQJ66+JEYwZh1fZQoaAZoCWgPQwjVy+80WfRyQJSGlFKUaBVL5GgWR0Ceux3Sro4ddX2UKGgGaAloD0MIVp+rrdiGc0CUhpRSlGgVS+NoFkdAnrtdU0elsXV9lChoBmgJaA9DCGg8EcT5WHFAlIaUUpRoFU0TAWgWR0Ceu3wN9YwJdX2UKGgGaAloD0MImzdOCvM6ckCUhpRSlGgVTS4BaBZHQJ679DJEH+t1fZQoaAZoCWgPQwiEfqZetwx0QJSGlFKUaBVNAQFoFkdAnrxON5t3wHV9lChoBmgJaA9DCGaH+IftWHBAlIaUUpRoFUvnaBZHQJ69wm7aqS51fZQoaAZoCWgPQwiCyCJNPOtwQJSGlFKUaBVNHQFoFkdAnr6endfsu3V9lChoBmgJaA9DCAW/DTHe5nFAlIaUUpRoFUv9aBZHQJ6+zNcGC7N1fZQoaAZoCWgPQwhB8Pj2bnNxQJSGlFKUaBVNCAFoFkdAnr7W9xp+MXV9lChoBmgJaA9DCEkrvqFwim5AlIaUUpRoFUvwaBZHQJ6/A7Omixp1fZQoaAZoCWgPQwj1vBsLisxyQJSGlFKUaBVL6mgWR0CevzBg/keZdX2UKGgGaAloD0MIOsyXFyBgcECUhpRSlGgVTQ4BaBZHQJ6/8/lhgE51fZQoaAZoCWgPQwj3zf3V40txQJSGlFKUaBVL82gWR0Cev/xcVxjsdX2UKGgGaAloD0MIu7ciMUFVckCUhpRSlGgVS+ZoFkdAnsA7YChexHV9lChoBmgJaA9DCEgxQKJJc3FAlIaUUpRoFUv5aBZHQJ7Ahpwjt5V1fZQoaAZoCWgPQwgnMQisnNRxQJSGlFKUaBVL4mgWR0CewIot+TePdX2UKGgGaAloD0MIISOgwpE3cECUhpRSlGgVS/NoFkdAnsDDnV5KOHV9lChoBmgJaA9DCDxp4bJKf3NAlIaUUpRoFUv2aBZHQJ7BUVCXyAh1fZQoaAZoCWgPQwg2IEJceeNxQJSGlFKUaBVL8mgWR0CewbDyOJcgdX2UKGgGaAloD0MIJeZZSSu9ckCUhpRSlGgVS/BoFkdAnsH/HxSYPXV9lChoBmgJaA9DCBzQ0hVsknJAlIaUUpRoFU0/AWgWR0Cewstb9qDcdX2UKGgGaAloD0MIiVxwBr8mcECUhpRSlGgVS+9oFkdAnsNxGc4HX3V9lChoBmgJaA9DCJWe6SXG41BAlIaUUpRoFUuraBZHQJ7WGbayrxR1fZQoaAZoCWgPQwiUSnhCb89wQJSGlFKUaBVL42gWR0Ce1rhx5s0pdX2UKGgGaAloD0MIvcYuUX0qcUCUhpRSlGgVS/hoFkdAnta3eaa1C3V9lChoBmgJaA9DCLzK2qZ483JAlIaUUpRoFUvzaBZHQJ7WwOkLx7R1fZQoaAZoCWgPQwiYo8fvLR9zQJSGlFKUaBVL7GgWR0Ce1sU/wAlwdX2UKGgGaAloD0MIaTum7goWcUCUhpRSlGgVS/RoFkdAntbKi48U23V9lChoBmgJaA9DCPwaSYJwlHJAlIaUUpRoFUveaBZHQJ7XUccU/Od1fZQoaAZoCWgPQwhNFCF1+/VxQJSGlFKUaBVL1mgWR0Ce11tP557gdX2UKGgGaAloD0MI4gSm07rcbkCUhpRSlGgVS/ZoFkdAntiH2/SH/XV9lChoBmgJaA9DCCridJJt6XBAlIaUUpRoFU0CAWgWR0Ce2I7J4jbBdX2UKGgGaAloD0MIHXQJh15HcUCUhpRSlGgVTQYBaBZHQJ7YplxwQ191fZQoaAZoCWgPQwjQYFPn0ddvQJSGlFKUaBVL9mgWR0Ce2Qvl2eQNdX2UKGgGaAloD0MIe/SG+8iKcUCUhpRSlGgVS+hoFkdAntlqp97Wu3V9lChoBmgJaA9DCA0dO6gEcXJAlIaUUpRoFUv7aBZHQJ7ZgnG82751fZQoaAZoCWgPQwg6IAn7NjNzQJSGlFKUaBVL4WgWR0Ce2f49ovi+dX2UKGgGaAloD0MIHEEqxY5mcUCUhpRSlGgVS+1oFkdAntrhIJ7b+XV9lChoBmgJaA9DCDWXGwx1CnFAlIaUUpRoFUv5aBZHQJ7bm1F6Rhd1fZQoaAZoCWgPQwjHEtbG2HFxQJSGlFKUaBVL5WgWR0Ce28XEqDsddX2UKGgGaAloD0MICYhJuJCwbECUhpRSlGgVS/RoFkdAntwhmoR7JHV9lChoBmgJaA9DCH0JFRweWnFAlIaUUpRoFUv+aBZHQJ7cg9q1w5x1fZQoaAZoCWgPQwglA0AVd7VwQJSGlFKUaBVNCwFoFkdAntzPRArxzHV9lChoBmgJaA9DCGMnvATnUnJAlIaUUpRoFU0QAWgWR0Ce3OJkXk5qdX2UKGgGaAloD0MIgUOoUvOrcUCUhpRSlGgVS/ZoFkdAntzqC+UQkHV9lChoBmgJaA9DCGkZqffUmnBAlIaUUpRoFU0bAWgWR0Ce3bcxj8UFdX2UKGgGaAloD0MIAkaXNwceckCUhpRSlGgVS+9oFkdAnt34PK+zt3V9lChoBmgJaA9DCMKk+PiExW9AlIaUUpRoFUv2aBZHQJ7ePUvwmVt1fZQoaAZoCWgPQwiUh4Vak8NyQJSGlFKUaBVL/WgWR0Ce3kv0yxiYdX2UKGgGaAloD0MIGTvhJTgFckCUhpRSlGgVS+xoFkdAnt5vQ4S6D3V9lChoBmgJaA9DCCoBMQkXxXNAlIaUUpRoFUvwaBZHQJ7e4EidJ8R1fZQoaAZoCWgPQwiMTMCvkaRxQJSGlFKUaBVL8mgWR0Ce3wJz1bqydX2UKGgGaAloD0MIBCDu6tVNbkCUhpRSlGgVS/1oFkdAnt/GdEsrd3V9lChoBmgJaA9DCONQvwtbs3BAlIaUUpRoFUvsaBZHQJ7gQ7Qswtd1fZQoaAZoCWgPQwjOUx1ys/5yQJSGlFKUaBVL4WgWR0Ce4KDMvAXVdX2UKGgGaAloD0MIdcjNcANUcECUhpRSlGgVS/toFkdAnuFkKqn3tnV9lChoBmgJaA9DCINNnUfFk3JAlIaUUpRoFUvRaBZHQJ7hZFQVKwp1fZQoaAZoCWgPQwh3ZKw2/xJuQJSGlFKUaBVL5WgWR0Ce4YAP/aQFdX2UKGgGaAloD0MILo81I4MvbkCUhpRSlGgVS/5oFkdAnuHAOWjXWnV9lChoBmgJaA9DCIro19ZPX3FAlIaUUpRoFUvoaBZHQJ7h0cFQl8h1fZQoaAZoCWgPQwh15EhnoDdxQJSGlFKUaBVL5mgWR0Ce4d9hJAdGdX2UKGgGaAloD0MIG2fTEUCnc0CUhpRSlGgVS+RoFkdAnuKjXarWAnV9lChoBmgJaA9DCAxbs5VXUnFAlIaUUpRoFUvbaBZHQJ7i/t7a7Ep1fZQoaAZoCWgPQwg6rdugtrdyQJSGlFKUaBVL7GgWR0Ce4wlSCOFQdX2UKGgGaAloD0MI8FAU6NO2cUCUhpRSlGgVS/loFkdAnuOXxOLzgHV9lChoBmgJaA9DCLvW3qeqJHNAlIaUUpRoFU0BAWgWR0Ce4/r0rbxmdX2UKGgGaAloD0MI+nspPGhQckCUhpRSlGgVS/9oFkdAnuRpCngpB3V9lChoBmgJaA9DCHUhVn/EIXFAlIaUUpRoFU0LAWgWR0Ce5NbYK6WgdX2UKGgGaAloD0MIIOwUqwZwbkCUhpRSlGgVS/xoFkdAnuVQZCOWB3V9lChoBmgJaA9DCOW0p+TchXBAlIaUUpRoFUv/aBZHQJ7l4Qxvegt1fZQoaAZoCWgPQwgK2XkbW1FzQJSGlFKUaBVL72gWR0Ce5efukUKzdX2UKGgGaAloD0MIgJ4GDJIxcUCUhpRSlGgVS99oFkdAnuZWalUIcHV9lChoBmgJaA9DCGk2j8NgoW5AlIaUUpRoFUvraBZHQJ7mfoPkJa91fZQoaAZoCWgPQwhwCcA/pTtxQJSGlFKUaBVL7GgWR0Ce5oON5t3wdX2UKGgGaAloD0MI6kDWU6v/b0CUhpRSlGgVTQABaBZHQJ7nSvs7dSF1fZQoaAZoCWgPQwhn1lJAGqVyQJSGlFKUaBVNBgFoFkdAnueEV8CxNnV9lChoBmgJaA9DCJUPQdXo/XBAlIaUUpRoFU0GAWgWR0Ce55XAdn01dX2UKGgGaAloD0MIJSAm4QLAcECUhpRSlGgVS/JoFkdAnuhQV9F4LXV9lChoBmgJaA9DCMzvNJkxRnBAlIaUUpRoFUvwaBZHQJ7oUIVuaWp1fZQoaAZoCWgPQwi2os1xbilxQJSGlFKUaBVL3mgWR0Ce6NXj2i+MdX2UKGgGaAloD0MIXrpJDIL2b0CUhpRSlGgVS+9oFkdAnujUuL74z3V9lChoBmgJaA9DCJgZNsq6W3JAlIaUUpRoFU0lAWgWR0Ce6QhsZYPodX2UKGgGaAloD0MI8BmJ0AiGcUCUhpRSlGgVS/1oFkdAnupd2X9it3V9lChoBmgJaA9DCG6nrRFBJXFAlIaUUpRoFU0QAWgWR0Ce6mMX7+DOdX2UKGgGaAloD0MIrweT4uNFcECUhpRSlGgVS/FoFkdAnuqTUmUnonV9lChoBmgJaA9DCC5U/rU8LHJAlIaUUpRoFUvjaBZHQJ7q0J4SpR51fZQoaAZoCWgPQwgzxLEu7mhyQJSGlFKUaBVL6mgWR0Ce6vz4DcM3dX2UKGgGaAloD0MIgzXOpmNAcUCUhpRSlGgVS+ZoFkdAnuuPS+g133V9lChoBmgJaA9DCBL4w88/q3BAlIaUUpRoFUvxaBZHQJ7rp9XtBv91fZQoaAZoCWgPQwg4glSKHf5vQJSGlFKUaBVL/2gWR0Ce7CEl3QlbdX2UKGgGaAloD0MI1hnfF5fmcECUhpRSlGgVS9toFkdAnuxrm2b5M3V9lChoBmgJaA9DCNgQHJexGHJAlIaUUpRoFUvpaBZHQJ7seMn7YTV1fZQoaAZoCWgPQwghA3l2eRBzQJSGlFKUaBVL6mgWR0Ce7K2a2F37dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}