aman-jaglan commited on
Commit
a104172
·
verified ·
1 Parent(s): 0c7f575

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +165 -3
README.md CHANGED
@@ -1,3 +1,165 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ library_name: transformers
6
+ tags:
7
+ - advisory
8
+ - llm-enhancement
9
+ - crm
10
+ - salesforce
11
+ - decision-support
12
+ base_model: Qwen/Qwen3-4B
13
+ ---
14
+
15
+ # ARC Advisor: Intelligent CRM Query Assistant for LLMs
16
+
17
+ <div align="center">
18
+
19
+ ![Model Architecture](https://img.shields.io/badge/Architecture-Advisory%20AI-blue)
20
+ ![Performance](https://img.shields.io/badge/LLM%20Improvement-X%25-green)
21
+ ![License](https://img.shields.io/badge/License-Apache%202.0-yellow)
22
+
23
+ </div>
24
+
25
+ ## 🚀 Model Overview
26
+
27
+ ARC Advisor is a specialized advisory model designed to enhance Large Language Models' performance on CRM and Salesforce-related tasks. By providing intelligent guidance and query structuring suggestions, it helps LLMs achieve significantly better results on complex CRM operations.
28
+
29
+ ### ✨ Key Benefits
30
+
31
+ - **X% Performance Boost**: Improves LLM accuracy on CRM tasks when used as an advisor
32
+ - **Intelligent Query Planning**: Provides structured approaches for complex Salesforce queries
33
+ - **Error Prevention**: Identifies potential pitfalls before query execution
34
+ - **Cost Efficient**: Small 4B model provides guidance to larger models, reducing overall compute costs
35
+
36
+ ## 🎯 Use Cases
37
+
38
+ ### 1. LLM Performance Enhancement
39
+ Boost your existing LLM's CRM capabilities by using ARC Advisor as a preprocessing step:
40
+
41
+ ```python
42
+ from transformers import AutoModelForCausalLM, AutoTokenizer
43
+
44
+ # Load ARC Advisor
45
+ advisor = AutoModelForCausalLM.from_pretrained("aman-jaglan/arc-advisor")
46
+ tokenizer = AutoTokenizer.from_pretrained("aman-jaglan/arc-advisor")
47
+
48
+ def enhance_llm_query(user_request):
49
+ # Step 1: Get advisory guidance
50
+ advisor_prompt = f"""As a CRM expert, provide guidance for this request:
51
+ {user_request}
52
+
53
+ Suggest the best approach, relevant objects, and query structure."""
54
+
55
+ inputs = tokenizer(advisor_prompt, return_tensors="pt")
56
+ advice = advisor.generate(**inputs, max_new_tokens=200)
57
+
58
+ # Step 2: Use advice to enhance main LLM prompt
59
+ enhanced_prompt = f"""
60
+ Expert Guidance: {tokenizer.decode(advice[0])}
61
+
62
+ Now execute: {user_request}
63
+ """
64
+
65
+ return enhanced_prompt
66
+ ```
67
+
68
+ ### 2. Query Optimization
69
+ Transform vague requests into structured CRM queries:
70
+
71
+ - **Input**: "Show me our best customers from last quarter"
72
+ - **ARC Advisor Output**: Structured approach with relevant Salesforce objects, filters, and aggregations
73
+ - **Result**: Precise SOQL query with proper date ranges and metrics
74
+
75
+ ### 3. Multi-Step Reasoning
76
+ Guide LLMs through complex multi-object queries:
77
+
78
+ - Lead-to-Opportunity conversion analysis
79
+ - Cross-object relationship queries
80
+ - Time-based trend analysis
81
+ - Performance metric calculations
82
+
83
+ ## 🛠️ Integration Examples
84
+
85
+ ### With OpenAI GPT Models
86
+ ```python
87
+ import openai
88
+
89
+ # Get advisor guidance first
90
+ advice = get_arc_advisor_guidance(query)
91
+
92
+ # Enhanced GPT query
93
+ response = openai.ChatCompletion.create(
94
+ model="gpt-4",
95
+ messages=[
96
+ {"role": "system", "content": f"CRM Expert Guidance: {advice}"},
97
+ {"role": "user", "content": original_query}
98
+ ]
99
+ )
100
+ ```
101
+
102
+ ### With Local LLMs (vLLM)
103
+ ```python
104
+ # Deploy ARC Advisor on lightweight infrastructure
105
+ # Use output to guide larger local models
106
+ advisor_server = "http://localhost:8000/v1/chat/completions"
107
+ main_llm_server = "http://localhost:8001/v1/chat/completions"
108
+ ```
109
+
110
+ ## 📊 Performance Impact
111
+
112
+ When used as an advisor:
113
+ - **Query Success Rate**: +X% improvement
114
+ - **Complex Query Handling**: +X% accuracy boost
115
+ - **Error Reduction**: X% fewer malformed queries
116
+ - **Time to Solution**: X% faster query resolution
117
+
118
+ ## 🔧 Deployment
119
+
120
+ ### Quick Start
121
+ ```bash
122
+ # Using Transformers
123
+ from transformers import pipeline
124
+ advisor = pipeline("text-generation", model="aman-jaglan/arc-advisor")
125
+
126
+ # Using vLLM (recommended for production)
127
+ python -m vllm.entrypoints.openai.api_server \
128
+ --model aman-jaglan/arc-advisor \
129
+ --dtype bfloat16 \
130
+ --max-model-len 4096
131
+ ```
132
+
133
+ ### Resource Requirements
134
+ - **GPU Memory**: 8GB (bfloat16)
135
+ - **CPU**: Supported with reduced speed
136
+ - **Optimal Batch Size**: 32-64 requests
137
+
138
+ ## 🏆 Why ARC Advisor?
139
+
140
+ 1. **Specialized Expertise**: Trained specifically for CRM/Salesforce domain
141
+ 2. **Efficient Architecture**: Small model that enhances larger models
142
+ 3. **Production Ready**: Optimized for low-latency advisory generation
143
+ 4. **Cost Effective**: Reduce expensive LLM calls through better query planning
144
+
145
+ ## 📚 Model Details
146
+
147
+ - **Architecture**: Qwen3-4B base with specialized fine-tuning
148
+ - **Context Length**: 4096 tokens
149
+ - **Output Format**: Structured advisory guidance
150
+ - **Language**: English
151
+
152
+ ## 🤝 Community
153
+
154
+ Join our community to share your experiences and improvements:
155
+ - Report issues on the [model repository](https://huggingface.co/aman-jaglan/arc-advisor)
156
+ - Share your integration examples
157
+ - Contribute to best practices documentation
158
+
159
+ ## 📜 License
160
+
161
+ Apache 2.0 - Commercial use permitted with attribution
162
+
163
+ ---
164
+
165
+ *Transform your LLM into a CRM expert with ARC Advisor*