File size: 20,398 Bytes
8abd44b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
# flake8: noqa

"""
Learnable preprocessing components for the block-based autoencoder.
Extracted from modeling_autoencoder.py to a dedicated module.
"""
from __future__ import annotations

from dataclasses import dataclass
from typing import Optional, Tuple

import torch
from typing import Tuple

try:
    from .blocks import BaseBlock
except Exception:
    from blocks import BaseBlock

import torch.nn as nn

try:
    from .configuration_autoencoder import AutoencoderConfig  # when loaded via HF dynamic module
except Exception:
    from configuration_autoencoder import AutoencoderConfig  # local usage


class NeuralScaler(nn.Module):
    """Learnable alternative to StandardScaler using neural networks."""

    def __init__(self, config: AutoencoderConfig):
        super().__init__()
        self.config = config
        input_dim = config.input_dim
        hidden_dim = config.preprocessing_hidden_dim

        self.mean_estimator = nn.Sequential(
            nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, input_dim)
        )
        self.std_estimator = nn.Sequential(
            nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, input_dim), nn.Softplus()
        )

        self.weight = nn.Parameter(torch.ones(input_dim))
        self.bias = nn.Parameter(torch.zeros(input_dim))

        self.register_buffer("running_mean", torch.zeros(input_dim))
        self.register_buffer("running_std", torch.ones(input_dim))
        self.register_buffer("num_batches_tracked", torch.tensor(0, dtype=torch.long))
        self.momentum = 0.1

    def forward(self, x: torch.Tensor, inverse: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
        if inverse:
            return self._inverse_transform(x)
        original_shape = x.shape
        if x.dim() == 3:
            x = x.view(-1, x.size(-1))
        if self.training:
            batch_mean = x.mean(dim=0, keepdim=True)
            batch_std = x.std(dim=0, keepdim=True)
            learned_mean_adj = self.mean_estimator(batch_mean)
            learned_std_adj = self.std_estimator(batch_std)
            effective_mean = batch_mean + learned_mean_adj
            effective_std = batch_std + learned_std_adj + 1e-8
            with torch.no_grad():
                self.num_batches_tracked += 1
                if self.num_batches_tracked == 1:
                    self.running_mean.copy_(batch_mean.squeeze())
                    self.running_std.copy_(batch_std.squeeze())
                else:
                    self.running_mean.mul_(1 - self.momentum).add_(batch_mean.squeeze(), alpha=self.momentum)
                    self.running_std.mul_(1 - self.momentum).add_(batch_std.squeeze(), alpha=self.momentum)
        else:
            effective_mean = self.running_mean.unsqueeze(0)
            effective_std = self.running_std.unsqueeze(0) + 1e-8
        normalized = (x - effective_mean) / effective_std
        transformed = normalized * self.weight + self.bias
        if len(original_shape) == 3:
            transformed = transformed.view(original_shape)
        reg_loss = 0.01 * (self.weight.var() + self.bias.var())
        return transformed, reg_loss

    def _inverse_transform(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        if not self.config.learn_inverse_preprocessing:
            return x, torch.tensor(0.0, device=x.device)
        original_shape = x.shape
        if x.dim() == 3:
            x = x.view(-1, x.size(-1))
        x = (x - self.bias) / (self.weight + 1e-8)
        effective_mean = self.running_mean.unsqueeze(0)
        effective_std = self.running_std.unsqueeze(0) + 1e-8
        x = x * effective_std + effective_mean
        if len(original_shape) == 3:
            x = x.view(original_shape)
        return x, torch.tensor(0.0, device=x.device)


class LearnableMinMaxScaler(nn.Module):
    """Learnable MinMax scaler that adapts bounds during training."""

    def __init__(self, config: AutoencoderConfig):
        super().__init__()
        self.config = config
        input_dim = config.input_dim
        hidden_dim = config.preprocessing_hidden_dim
        self.min_estimator = nn.Sequential(
            nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, input_dim)
        )
        self.range_estimator = nn.Sequential(
            nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, input_dim), nn.Softplus()
        )
        self.weight = nn.Parameter(torch.ones(input_dim))
        self.bias = nn.Parameter(torch.zeros(input_dim))
        self.register_buffer("running_min", torch.zeros(input_dim))
        self.register_buffer("running_range", torch.ones(input_dim))
        self.register_buffer("num_batches_tracked", torch.tensor(0, dtype=torch.long))
        self.momentum = 0.1

    def forward(self, x: torch.Tensor, inverse: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
        if inverse:
            return self._inverse_transform(x)
        original_shape = x.shape
        if x.dim() == 3:
            x = x.view(-1, x.size(-1))
        eps = 1e-8
        if self.training:
            batch_min = x.min(dim=0, keepdim=True).values
            batch_max = x.max(dim=0, keepdim=True).values
            batch_range = (batch_max - batch_min).clamp_min(eps)
            learned_min_adj = self.min_estimator(batch_min)
            learned_range_adj = self.range_estimator(batch_range)
            effective_min = batch_min + learned_min_adj
            effective_range = batch_range + learned_range_adj + eps
            with torch.no_grad():
                self.num_batches_tracked += 1
                if self.num_batches_tracked == 1:
                    self.running_min.copy_(batch_min.squeeze())
                    self.running_range.copy_(batch_range.squeeze())
                else:
                    self.running_min.mul_(1 - self.momentum).add_(batch_min.squeeze(), alpha=self.momentum)
                    self.running_range.mul_(1 - self.momentum).add_(batch_range.squeeze(), alpha=self.momentum)
        else:
            effective_min = self.running_min.unsqueeze(0)
            effective_range = self.running_range.unsqueeze(0)
        scaled = (x - effective_min) / effective_range
        transformed = scaled * self.weight + self.bias
        if len(original_shape) == 3:
            transformed = transformed.view(original_shape)
        reg_loss = 0.01 * (self.weight.var() + self.bias.var())
        if self.training:
            reg_loss = reg_loss + 0.001 * (1.0 / effective_range.clamp_min(1e-3)).mean()
        return transformed, reg_loss

    def _inverse_transform(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        if not self.config.learn_inverse_preprocessing:
            return x, torch.tensor(0.0, device=x.device)
        original_shape = x.shape
        if x.dim() == 3:
            x = x.view(-1, x.size(-1))
        x = (x - self.bias) / (self.weight + 1e-8)
        x = x * self.running_range.unsqueeze(0) + self.running_min.unsqueeze(0)
        if len(original_shape) == 3:
            x = x.view(original_shape)
        return x, torch.tensor(0.0, device=x.device)


class LearnableRobustScaler(nn.Module):
    """Learnable Robust scaler using median and IQR with learnable adjustments."""

    def __init__(self, config: AutoencoderConfig):
        super().__init__()
        self.config = config
        input_dim = config.input_dim
        hidden_dim = config.preprocessing_hidden_dim
        self.median_estimator = nn.Sequential(
            nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, input_dim)
        )
        self.iqr_estimator = nn.Sequential(
            nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, input_dim), nn.Softplus()
        )
        self.weight = nn.Parameter(torch.ones(input_dim))
        self.bias = nn.Parameter(torch.zeros(input_dim))
        self.register_buffer("running_median", torch.zeros(input_dim))
        self.register_buffer("running_iqr", torch.ones(input_dim))
        self.register_buffer("num_batches_tracked", torch.tensor(0, dtype=torch.long))
        self.momentum = 0.1

    def forward(self, x: torch.Tensor, inverse: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
        if inverse:
            return self._inverse_transform(x)
        original_shape = x.shape
        if x.dim() == 3:
            x = x.view(-1, x.size(-1))
        eps = 1e-8
        if self.training:
            qs = torch.quantile(x, torch.tensor([0.25, 0.5, 0.75], device=x.device), dim=0)
            q25, med, q75 = qs[0:1, :], qs[1:2, :], qs[2:3, :]
            iqr = (q75 - q25).clamp_min(eps)
            learned_med_adj = self.median_estimator(med)
            learned_iqr_adj = self.iqr_estimator(iqr)
            effective_median = med + learned_med_adj
            effective_iqr = iqr + learned_iqr_adj + eps
            with torch.no_grad():
                self.num_batches_tracked += 1
                if self.num_batches_tracked == 1:
                    self.running_median.copy_(med.squeeze())
                    self.running_iqr.copy_(iqr.squeeze())
                else:
                    self.running_median.mul_(1 - self.momentum).add_(med.squeeze(), alpha=self.momentum)
                    self.running_iqr.mul_(1 - self.momentum).add_(iqr.squeeze(), alpha=self.momentum)
        else:
            effective_median = self.running_median.unsqueeze(0)
            effective_iqr = self.running_iqr.unsqueeze(0)
        normalized = (x - effective_median) / effective_iqr
        transformed = normalized * self.weight + self.bias
        if len(original_shape) == 3:
            transformed = transformed.view(original_shape)
        reg_loss = 0.01 * (self.weight.var() + self.bias.var())
        if self.training:
            reg_loss = reg_loss + 0.001 * (1.0 / effective_iqr.clamp_min(1e-3)).mean()
        return transformed, reg_loss

    def _inverse_transform(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        if not self.config.learn_inverse_preprocessing:
            return x, torch.tensor(0.0, device=x.device)
        original_shape = x.shape
        if x.dim() == 3:
            x = x.view(-1, x.size(-1))
        x = (x - self.bias) / (self.weight + 1e-8)
        x = x * self.running_iqr.unsqueeze(0) + self.running_median.unsqueeze(0)
        if len(original_shape) == 3:
            x = x.view(original_shape)
        return x, torch.tensor(0.0, device=x.device)


class LearnableYeoJohnsonPreprocessor(nn.Module):
    """Learnable Yeo-Johnson power transform with per-feature lambda and affine head."""

    def __init__(self, config: AutoencoderConfig):
        super().__init__()
        self.config = config
        input_dim = config.input_dim
        self.lmbda = nn.Parameter(torch.ones(input_dim))
        self.weight = nn.Parameter(torch.ones(input_dim))
        self.bias = nn.Parameter(torch.zeros(input_dim))
        self.register_buffer("running_mean", torch.zeros(input_dim))
        self.register_buffer("running_std", torch.ones(input_dim))
        self.register_buffer("num_batches_tracked", torch.tensor(0, dtype=torch.long))
        self.momentum = 0.1

    def _yeo_johnson(self, x: torch.Tensor, lmbda: torch.Tensor) -> torch.Tensor:
        eps = 1e-6
        lmbda = lmbda.unsqueeze(0)
        pos = x >= 0
        if_part = torch.where(torch.abs(lmbda) > eps, ((x + 1.0).clamp_min(eps) ** lmbda - 1.0) / lmbda, torch.log((x + 1.0).clamp_min(eps)))
        two_minus_lambda = 2.0 - lmbda
        else_part = torch.where(torch.abs(two_minus_lambda) > eps, -(((1.0 - x).clamp_min(eps)) ** two_minus_lambda - 1.0) / two_minus_lambda, -torch.log((1.0 - x).clamp_min(eps)))
        return torch.where(pos, if_part, else_part)

    def _yeo_johnson_inverse(self, y: torch.Tensor, lmbda: torch.Tensor) -> torch.Tensor:
        eps = 1e-6
        lmbda = lmbda.unsqueeze(0)
        pos = y >= 0
        x_pos = torch.where(torch.abs(lmbda) > eps, (y * lmbda + 1.0).clamp_min(eps) ** (1.0 / lmbda) - 1.0, torch.exp(y) - 1.0)
        two_minus_lambda = 2.0 - lmbda
        x_neg = torch.where(torch.abs(two_minus_lambda) > eps, 1.0 - (1.0 - y * two_minus_lambda).clamp_min(eps) ** (1.0 / two_minus_lambda), 1.0 - torch.exp(-y))
        return torch.where(pos, x_pos, x_neg)

    def forward(self, x: torch.Tensor, inverse: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
        if inverse:
            return self._inverse_transform(x)
        orig_shape = x.shape
        if x.dim() == 3:
            x = x.view(-1, x.size(-1))
        y = self._yeo_johnson(x, self.lmbda)
        if self.training:
            batch_mean = y.mean(dim=0, keepdim=True)
            batch_std = y.std(dim=0, keepdim=True).clamp_min(1e-6)
            with torch.no_grad():
                self.num_batches_tracked += 1
                if self.num_batches_tracked == 1:
                    self.running_mean.copy_(batch_mean.squeeze())
                    self.running_std.copy_(batch_std.squeeze())
                else:
                    self.running_mean.mul_(1 - self.momentum).add_(batch_mean.squeeze(), alpha=self.momentum)
                    self.running_std.mul_(1 - self.momentum).add_(batch_std.squeeze(), alpha=self.momentum)
            mean = batch_mean
            std = batch_std
        else:
            mean = self.running_mean.unsqueeze(0)
            std = self.running_std.unsqueeze(0)
        y_norm = (y - mean) / std
        out = y_norm * self.weight + self.bias
        if len(orig_shape) == 3:
            out = out.view(orig_shape)
        reg = 0.001 * (self.lmbda - 1.0).pow(2).mean() + 0.01 * (self.weight.var() + self.bias.var())
        return out, reg

    def _inverse_transform(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        if not self.config.learn_inverse_preprocessing:
            return x, torch.tensor(0.0, device=x.device)
        orig_shape = x.shape
        if x.dim() == 3:
            x = x.view(-1, x.size(-1))
        y = (x - self.bias) / (self.weight + 1e-8)
        y = y * self.running_std.unsqueeze(0) + self.running_mean.unsqueeze(0)
        out = self._yeo_johnson_inverse(y, self.lmbda)
        if len(orig_shape) == 3:
            out = out.view(orig_shape)
        return out, torch.tensor(0.0, device=x.device)



class PreprocessingBlock(BaseBlock):
    """Wraps a LearnablePreprocessor into a BaseBlock-compatible interface.
    Forward returns the transformed tensor and stores the regularization loss in .reg_loss.
    The inverse flag is configured at initialization to avoid leaking kwargs to other blocks.
    """

    def __init__(self, config: AutoencoderConfig, inverse: bool = False, proc: Optional[LearnablePreprocessor] = None):
        super().__init__()
        self.proc = proc if proc is not None else LearnablePreprocessor(config)
        self._output_dim = config.input_dim
        self.inverse = inverse
        self.reg_loss: torch.Tensor = torch.tensor(0.0)

    @property
    def output_dim(self) -> int:
        return self._output_dim

    def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
        y, reg = self.proc(x, inverse=self.inverse)
        self.reg_loss = reg
        return y

class CouplingLayer(nn.Module):
    """Coupling layer for normalizing flows."""

    def __init__(self, input_dim: int, hidden_dim: int = 64, mask_type: str = "alternating"):
        super().__init__()
        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        if mask_type == "alternating":
            self.register_buffer("mask", torch.arange(input_dim) % 2)
        elif mask_type == "half":
            mask = torch.zeros(input_dim)
            mask[: input_dim // 2] = 1
            self.register_buffer("mask", mask)
        else:
            raise ValueError(f"Unknown mask type: {mask_type}")
        masked_dim = int(self.mask.sum().item())
        unmasked_dim = input_dim - masked_dim
        self.scale_net = nn.Sequential(
            nn.Linear(masked_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, unmasked_dim), nn.Tanh()
        )
        self.translate_net = nn.Sequential(
            nn.Linear(masked_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, unmasked_dim)
        )

    def forward(self, x: torch.Tensor, inverse: bool = False):
        mask = self.mask.bool()
        x_masked = x[:, mask]
        x_unmasked = x[:, ~mask]
        s = self.scale_net(x_masked)
        t = self.translate_net(x_masked)
        if not inverse:
            y_unmasked = x_unmasked * torch.exp(s) + t
            log_det = s.sum(dim=1)
        else:
            y_unmasked = (x_unmasked - t) * torch.exp(-s)
            log_det = -s.sum(dim=1)
        y = torch.zeros_like(x)
        y[:, mask] = x_masked
        y[:, ~mask] = y_unmasked
        return y, log_det


class NormalizingFlowPreprocessor(nn.Module):
    """Normalizing flow for learnable data preprocessing."""

    def __init__(self, config: AutoencoderConfig):
        super().__init__()
        self.config = config
        input_dim = config.input_dim
        hidden_dim = config.preprocessing_hidden_dim
        num_layers = config.flow_coupling_layers
        self.layers = nn.ModuleList()
        for i in range(num_layers):
            mask_type = "alternating" if i % 2 == 0 else "half"
            self.layers.append(CouplingLayer(input_dim, hidden_dim, mask_type))
        if config.use_batch_norm:
            self.batch_norms = nn.ModuleList([nn.BatchNorm1d(input_dim) for _ in range(num_layers - 1)])
        else:
            self.batch_norms = None

    def forward(self, x: torch.Tensor, inverse: bool = False):
        original_shape = x.shape
        if x.dim() == 3:
            x = x.view(-1, x.size(-1))
        log_det_total = torch.zeros(x.size(0), device=x.device)
        if not inverse:
            for i, layer in enumerate(self.layers):
                x, log_det = layer(x, inverse=False)
                log_det_total += log_det
                if self.batch_norms and i < len(self.layers) - 1:
                    x = self.batch_norms[i](x)
        else:
            for i, layer in enumerate(reversed(self.layers)):
                if self.batch_norms and i > 0:
                    bn_idx = len(self.layers) - 1 - i
                    x = self.batch_norms[bn_idx](x)
                x, log_det = layer(x, inverse=True)
                log_det_total += log_det
        if len(original_shape) == 3:
            x = x.view(original_shape)
        reg_loss = 0.01 * log_det_total.abs().mean()
        return x, reg_loss


class LearnablePreprocessor(nn.Module):
    """Unified interface for learnable preprocessing methods."""

    def __init__(self, config: AutoencoderConfig):
        super().__init__()
        self.config = config
        if not config.has_preprocessing:
            self.preprocessor = nn.Identity()
        elif config.is_neural_scaler:
            self.preprocessor = NeuralScaler(config)
        elif config.is_normalizing_flow:
            self.preprocessor = NormalizingFlowPreprocessor(config)
        elif getattr(config, "is_minmax_scaler", False):
            self.preprocessor = LearnableMinMaxScaler(config)
        elif getattr(config, "is_robust_scaler", False):
            self.preprocessor = LearnableRobustScaler(config)
        elif getattr(config, "is_yeo_johnson", False):
            self.preprocessor = LearnableYeoJohnsonPreprocessor(config)
        else:
            raise ValueError(f"Unknown preprocessing type: {config.preprocessing_type}")

    def forward(self, x: torch.Tensor, inverse: bool = False):
        if isinstance(self.preprocessor, nn.Identity):
            return x, torch.tensor(0.0, device=x.device)
        return self.preprocessor(x, inverse=inverse)



__all__ = [
    "NeuralScaler",
    "LearnableMinMaxScaler",
    "LearnableRobustScaler",
    "LearnableYeoJohnsonPreprocessor",
    "CouplingLayer",
    "NormalizingFlowPreprocessor",
    "LearnablePreprocessor",
    "PreprocessingBlock",
]