File size: 20,398 Bytes
8abd44b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
# flake8: noqa
"""
Learnable preprocessing components for the block-based autoencoder.
Extracted from modeling_autoencoder.py to a dedicated module.
"""
from __future__ import annotations
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
from typing import Tuple
try:
from .blocks import BaseBlock
except Exception:
from blocks import BaseBlock
import torch.nn as nn
try:
from .configuration_autoencoder import AutoencoderConfig # when loaded via HF dynamic module
except Exception:
from configuration_autoencoder import AutoencoderConfig # local usage
class NeuralScaler(nn.Module):
"""Learnable alternative to StandardScaler using neural networks."""
def __init__(self, config: AutoencoderConfig):
super().__init__()
self.config = config
input_dim = config.input_dim
hidden_dim = config.preprocessing_hidden_dim
self.mean_estimator = nn.Sequential(
nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, input_dim)
)
self.std_estimator = nn.Sequential(
nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, input_dim), nn.Softplus()
)
self.weight = nn.Parameter(torch.ones(input_dim))
self.bias = nn.Parameter(torch.zeros(input_dim))
self.register_buffer("running_mean", torch.zeros(input_dim))
self.register_buffer("running_std", torch.ones(input_dim))
self.register_buffer("num_batches_tracked", torch.tensor(0, dtype=torch.long))
self.momentum = 0.1
def forward(self, x: torch.Tensor, inverse: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
if inverse:
return self._inverse_transform(x)
original_shape = x.shape
if x.dim() == 3:
x = x.view(-1, x.size(-1))
if self.training:
batch_mean = x.mean(dim=0, keepdim=True)
batch_std = x.std(dim=0, keepdim=True)
learned_mean_adj = self.mean_estimator(batch_mean)
learned_std_adj = self.std_estimator(batch_std)
effective_mean = batch_mean + learned_mean_adj
effective_std = batch_std + learned_std_adj + 1e-8
with torch.no_grad():
self.num_batches_tracked += 1
if self.num_batches_tracked == 1:
self.running_mean.copy_(batch_mean.squeeze())
self.running_std.copy_(batch_std.squeeze())
else:
self.running_mean.mul_(1 - self.momentum).add_(batch_mean.squeeze(), alpha=self.momentum)
self.running_std.mul_(1 - self.momentum).add_(batch_std.squeeze(), alpha=self.momentum)
else:
effective_mean = self.running_mean.unsqueeze(0)
effective_std = self.running_std.unsqueeze(0) + 1e-8
normalized = (x - effective_mean) / effective_std
transformed = normalized * self.weight + self.bias
if len(original_shape) == 3:
transformed = transformed.view(original_shape)
reg_loss = 0.01 * (self.weight.var() + self.bias.var())
return transformed, reg_loss
def _inverse_transform(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
if not self.config.learn_inverse_preprocessing:
return x, torch.tensor(0.0, device=x.device)
original_shape = x.shape
if x.dim() == 3:
x = x.view(-1, x.size(-1))
x = (x - self.bias) / (self.weight + 1e-8)
effective_mean = self.running_mean.unsqueeze(0)
effective_std = self.running_std.unsqueeze(0) + 1e-8
x = x * effective_std + effective_mean
if len(original_shape) == 3:
x = x.view(original_shape)
return x, torch.tensor(0.0, device=x.device)
class LearnableMinMaxScaler(nn.Module):
"""Learnable MinMax scaler that adapts bounds during training."""
def __init__(self, config: AutoencoderConfig):
super().__init__()
self.config = config
input_dim = config.input_dim
hidden_dim = config.preprocessing_hidden_dim
self.min_estimator = nn.Sequential(
nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, input_dim)
)
self.range_estimator = nn.Sequential(
nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, input_dim), nn.Softplus()
)
self.weight = nn.Parameter(torch.ones(input_dim))
self.bias = nn.Parameter(torch.zeros(input_dim))
self.register_buffer("running_min", torch.zeros(input_dim))
self.register_buffer("running_range", torch.ones(input_dim))
self.register_buffer("num_batches_tracked", torch.tensor(0, dtype=torch.long))
self.momentum = 0.1
def forward(self, x: torch.Tensor, inverse: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
if inverse:
return self._inverse_transform(x)
original_shape = x.shape
if x.dim() == 3:
x = x.view(-1, x.size(-1))
eps = 1e-8
if self.training:
batch_min = x.min(dim=0, keepdim=True).values
batch_max = x.max(dim=0, keepdim=True).values
batch_range = (batch_max - batch_min).clamp_min(eps)
learned_min_adj = self.min_estimator(batch_min)
learned_range_adj = self.range_estimator(batch_range)
effective_min = batch_min + learned_min_adj
effective_range = batch_range + learned_range_adj + eps
with torch.no_grad():
self.num_batches_tracked += 1
if self.num_batches_tracked == 1:
self.running_min.copy_(batch_min.squeeze())
self.running_range.copy_(batch_range.squeeze())
else:
self.running_min.mul_(1 - self.momentum).add_(batch_min.squeeze(), alpha=self.momentum)
self.running_range.mul_(1 - self.momentum).add_(batch_range.squeeze(), alpha=self.momentum)
else:
effective_min = self.running_min.unsqueeze(0)
effective_range = self.running_range.unsqueeze(0)
scaled = (x - effective_min) / effective_range
transformed = scaled * self.weight + self.bias
if len(original_shape) == 3:
transformed = transformed.view(original_shape)
reg_loss = 0.01 * (self.weight.var() + self.bias.var())
if self.training:
reg_loss = reg_loss + 0.001 * (1.0 / effective_range.clamp_min(1e-3)).mean()
return transformed, reg_loss
def _inverse_transform(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
if not self.config.learn_inverse_preprocessing:
return x, torch.tensor(0.0, device=x.device)
original_shape = x.shape
if x.dim() == 3:
x = x.view(-1, x.size(-1))
x = (x - self.bias) / (self.weight + 1e-8)
x = x * self.running_range.unsqueeze(0) + self.running_min.unsqueeze(0)
if len(original_shape) == 3:
x = x.view(original_shape)
return x, torch.tensor(0.0, device=x.device)
class LearnableRobustScaler(nn.Module):
"""Learnable Robust scaler using median and IQR with learnable adjustments."""
def __init__(self, config: AutoencoderConfig):
super().__init__()
self.config = config
input_dim = config.input_dim
hidden_dim = config.preprocessing_hidden_dim
self.median_estimator = nn.Sequential(
nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, input_dim)
)
self.iqr_estimator = nn.Sequential(
nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, input_dim), nn.Softplus()
)
self.weight = nn.Parameter(torch.ones(input_dim))
self.bias = nn.Parameter(torch.zeros(input_dim))
self.register_buffer("running_median", torch.zeros(input_dim))
self.register_buffer("running_iqr", torch.ones(input_dim))
self.register_buffer("num_batches_tracked", torch.tensor(0, dtype=torch.long))
self.momentum = 0.1
def forward(self, x: torch.Tensor, inverse: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
if inverse:
return self._inverse_transform(x)
original_shape = x.shape
if x.dim() == 3:
x = x.view(-1, x.size(-1))
eps = 1e-8
if self.training:
qs = torch.quantile(x, torch.tensor([0.25, 0.5, 0.75], device=x.device), dim=0)
q25, med, q75 = qs[0:1, :], qs[1:2, :], qs[2:3, :]
iqr = (q75 - q25).clamp_min(eps)
learned_med_adj = self.median_estimator(med)
learned_iqr_adj = self.iqr_estimator(iqr)
effective_median = med + learned_med_adj
effective_iqr = iqr + learned_iqr_adj + eps
with torch.no_grad():
self.num_batches_tracked += 1
if self.num_batches_tracked == 1:
self.running_median.copy_(med.squeeze())
self.running_iqr.copy_(iqr.squeeze())
else:
self.running_median.mul_(1 - self.momentum).add_(med.squeeze(), alpha=self.momentum)
self.running_iqr.mul_(1 - self.momentum).add_(iqr.squeeze(), alpha=self.momentum)
else:
effective_median = self.running_median.unsqueeze(0)
effective_iqr = self.running_iqr.unsqueeze(0)
normalized = (x - effective_median) / effective_iqr
transformed = normalized * self.weight + self.bias
if len(original_shape) == 3:
transformed = transformed.view(original_shape)
reg_loss = 0.01 * (self.weight.var() + self.bias.var())
if self.training:
reg_loss = reg_loss + 0.001 * (1.0 / effective_iqr.clamp_min(1e-3)).mean()
return transformed, reg_loss
def _inverse_transform(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
if not self.config.learn_inverse_preprocessing:
return x, torch.tensor(0.0, device=x.device)
original_shape = x.shape
if x.dim() == 3:
x = x.view(-1, x.size(-1))
x = (x - self.bias) / (self.weight + 1e-8)
x = x * self.running_iqr.unsqueeze(0) + self.running_median.unsqueeze(0)
if len(original_shape) == 3:
x = x.view(original_shape)
return x, torch.tensor(0.0, device=x.device)
class LearnableYeoJohnsonPreprocessor(nn.Module):
"""Learnable Yeo-Johnson power transform with per-feature lambda and affine head."""
def __init__(self, config: AutoencoderConfig):
super().__init__()
self.config = config
input_dim = config.input_dim
self.lmbda = nn.Parameter(torch.ones(input_dim))
self.weight = nn.Parameter(torch.ones(input_dim))
self.bias = nn.Parameter(torch.zeros(input_dim))
self.register_buffer("running_mean", torch.zeros(input_dim))
self.register_buffer("running_std", torch.ones(input_dim))
self.register_buffer("num_batches_tracked", torch.tensor(0, dtype=torch.long))
self.momentum = 0.1
def _yeo_johnson(self, x: torch.Tensor, lmbda: torch.Tensor) -> torch.Tensor:
eps = 1e-6
lmbda = lmbda.unsqueeze(0)
pos = x >= 0
if_part = torch.where(torch.abs(lmbda) > eps, ((x + 1.0).clamp_min(eps) ** lmbda - 1.0) / lmbda, torch.log((x + 1.0).clamp_min(eps)))
two_minus_lambda = 2.0 - lmbda
else_part = torch.where(torch.abs(two_minus_lambda) > eps, -(((1.0 - x).clamp_min(eps)) ** two_minus_lambda - 1.0) / two_minus_lambda, -torch.log((1.0 - x).clamp_min(eps)))
return torch.where(pos, if_part, else_part)
def _yeo_johnson_inverse(self, y: torch.Tensor, lmbda: torch.Tensor) -> torch.Tensor:
eps = 1e-6
lmbda = lmbda.unsqueeze(0)
pos = y >= 0
x_pos = torch.where(torch.abs(lmbda) > eps, (y * lmbda + 1.0).clamp_min(eps) ** (1.0 / lmbda) - 1.0, torch.exp(y) - 1.0)
two_minus_lambda = 2.0 - lmbda
x_neg = torch.where(torch.abs(two_minus_lambda) > eps, 1.0 - (1.0 - y * two_minus_lambda).clamp_min(eps) ** (1.0 / two_minus_lambda), 1.0 - torch.exp(-y))
return torch.where(pos, x_pos, x_neg)
def forward(self, x: torch.Tensor, inverse: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
if inverse:
return self._inverse_transform(x)
orig_shape = x.shape
if x.dim() == 3:
x = x.view(-1, x.size(-1))
y = self._yeo_johnson(x, self.lmbda)
if self.training:
batch_mean = y.mean(dim=0, keepdim=True)
batch_std = y.std(dim=0, keepdim=True).clamp_min(1e-6)
with torch.no_grad():
self.num_batches_tracked += 1
if self.num_batches_tracked == 1:
self.running_mean.copy_(batch_mean.squeeze())
self.running_std.copy_(batch_std.squeeze())
else:
self.running_mean.mul_(1 - self.momentum).add_(batch_mean.squeeze(), alpha=self.momentum)
self.running_std.mul_(1 - self.momentum).add_(batch_std.squeeze(), alpha=self.momentum)
mean = batch_mean
std = batch_std
else:
mean = self.running_mean.unsqueeze(0)
std = self.running_std.unsqueeze(0)
y_norm = (y - mean) / std
out = y_norm * self.weight + self.bias
if len(orig_shape) == 3:
out = out.view(orig_shape)
reg = 0.001 * (self.lmbda - 1.0).pow(2).mean() + 0.01 * (self.weight.var() + self.bias.var())
return out, reg
def _inverse_transform(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
if not self.config.learn_inverse_preprocessing:
return x, torch.tensor(0.0, device=x.device)
orig_shape = x.shape
if x.dim() == 3:
x = x.view(-1, x.size(-1))
y = (x - self.bias) / (self.weight + 1e-8)
y = y * self.running_std.unsqueeze(0) + self.running_mean.unsqueeze(0)
out = self._yeo_johnson_inverse(y, self.lmbda)
if len(orig_shape) == 3:
out = out.view(orig_shape)
return out, torch.tensor(0.0, device=x.device)
class PreprocessingBlock(BaseBlock):
"""Wraps a LearnablePreprocessor into a BaseBlock-compatible interface.
Forward returns the transformed tensor and stores the regularization loss in .reg_loss.
The inverse flag is configured at initialization to avoid leaking kwargs to other blocks.
"""
def __init__(self, config: AutoencoderConfig, inverse: bool = False, proc: Optional[LearnablePreprocessor] = None):
super().__init__()
self.proc = proc if proc is not None else LearnablePreprocessor(config)
self._output_dim = config.input_dim
self.inverse = inverse
self.reg_loss: torch.Tensor = torch.tensor(0.0)
@property
def output_dim(self) -> int:
return self._output_dim
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
y, reg = self.proc(x, inverse=self.inverse)
self.reg_loss = reg
return y
class CouplingLayer(nn.Module):
"""Coupling layer for normalizing flows."""
def __init__(self, input_dim: int, hidden_dim: int = 64, mask_type: str = "alternating"):
super().__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
if mask_type == "alternating":
self.register_buffer("mask", torch.arange(input_dim) % 2)
elif mask_type == "half":
mask = torch.zeros(input_dim)
mask[: input_dim // 2] = 1
self.register_buffer("mask", mask)
else:
raise ValueError(f"Unknown mask type: {mask_type}")
masked_dim = int(self.mask.sum().item())
unmasked_dim = input_dim - masked_dim
self.scale_net = nn.Sequential(
nn.Linear(masked_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, unmasked_dim), nn.Tanh()
)
self.translate_net = nn.Sequential(
nn.Linear(masked_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, unmasked_dim)
)
def forward(self, x: torch.Tensor, inverse: bool = False):
mask = self.mask.bool()
x_masked = x[:, mask]
x_unmasked = x[:, ~mask]
s = self.scale_net(x_masked)
t = self.translate_net(x_masked)
if not inverse:
y_unmasked = x_unmasked * torch.exp(s) + t
log_det = s.sum(dim=1)
else:
y_unmasked = (x_unmasked - t) * torch.exp(-s)
log_det = -s.sum(dim=1)
y = torch.zeros_like(x)
y[:, mask] = x_masked
y[:, ~mask] = y_unmasked
return y, log_det
class NormalizingFlowPreprocessor(nn.Module):
"""Normalizing flow for learnable data preprocessing."""
def __init__(self, config: AutoencoderConfig):
super().__init__()
self.config = config
input_dim = config.input_dim
hidden_dim = config.preprocessing_hidden_dim
num_layers = config.flow_coupling_layers
self.layers = nn.ModuleList()
for i in range(num_layers):
mask_type = "alternating" if i % 2 == 0 else "half"
self.layers.append(CouplingLayer(input_dim, hidden_dim, mask_type))
if config.use_batch_norm:
self.batch_norms = nn.ModuleList([nn.BatchNorm1d(input_dim) for _ in range(num_layers - 1)])
else:
self.batch_norms = None
def forward(self, x: torch.Tensor, inverse: bool = False):
original_shape = x.shape
if x.dim() == 3:
x = x.view(-1, x.size(-1))
log_det_total = torch.zeros(x.size(0), device=x.device)
if not inverse:
for i, layer in enumerate(self.layers):
x, log_det = layer(x, inverse=False)
log_det_total += log_det
if self.batch_norms and i < len(self.layers) - 1:
x = self.batch_norms[i](x)
else:
for i, layer in enumerate(reversed(self.layers)):
if self.batch_norms and i > 0:
bn_idx = len(self.layers) - 1 - i
x = self.batch_norms[bn_idx](x)
x, log_det = layer(x, inverse=True)
log_det_total += log_det
if len(original_shape) == 3:
x = x.view(original_shape)
reg_loss = 0.01 * log_det_total.abs().mean()
return x, reg_loss
class LearnablePreprocessor(nn.Module):
"""Unified interface for learnable preprocessing methods."""
def __init__(self, config: AutoencoderConfig):
super().__init__()
self.config = config
if not config.has_preprocessing:
self.preprocessor = nn.Identity()
elif config.is_neural_scaler:
self.preprocessor = NeuralScaler(config)
elif config.is_normalizing_flow:
self.preprocessor = NormalizingFlowPreprocessor(config)
elif getattr(config, "is_minmax_scaler", False):
self.preprocessor = LearnableMinMaxScaler(config)
elif getattr(config, "is_robust_scaler", False):
self.preprocessor = LearnableRobustScaler(config)
elif getattr(config, "is_yeo_johnson", False):
self.preprocessor = LearnableYeoJohnsonPreprocessor(config)
else:
raise ValueError(f"Unknown preprocessing type: {config.preprocessing_type}")
def forward(self, x: torch.Tensor, inverse: bool = False):
if isinstance(self.preprocessor, nn.Identity):
return x, torch.tensor(0.0, device=x.device)
return self.preprocessor(x, inverse=inverse)
__all__ = [
"NeuralScaler",
"LearnableMinMaxScaler",
"LearnableRobustScaler",
"LearnableYeoJohnsonPreprocessor",
"CouplingLayer",
"NormalizingFlowPreprocessor",
"LearnablePreprocessor",
"PreprocessingBlock",
]
|