File size: 17,028 Bytes
8abd44b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
"""
Ready-to-use configuration templates for the block-based Autoencoder.

These helpers demonstrate how to assemble encoder_blocks and decoder_blocks
for a variety of architectures using the new block system. Each class extends
AutoencoderConfig and can be passed directly to AutoencoderModel.

Example:
    from modeling_autoencoder import AutoencoderModel
    from template import ClassicAutoencoderConfig

    cfg = ClassicAutoencoderConfig(input_dim=784, latent_dim=64)
    model = AutoencoderModel(cfg)
"""
from __future__ import annotations

from typing import List

# Support both package-relative and flat import
try:
    from .configuration_autoencoder import (
        AutoencoderConfig,
    )
except Exception:  # pragma: no cover
    from configuration_autoencoder import (
        AutoencoderConfig,
    )


# ------------------------------- Helpers ------------------------------- #

def _linear_stack(input_dim: int, dims: List[int], activation: str = "relu", normalization: str = "batch", dropout: float = 0.0):
    """Build a list of Linear block dict configs mapping input_dim -> dims sequentially."""
    blocks = []
    prev = input_dim
    for h in dims:
        blocks.append({
            "type": "linear",
            "input_dim": prev,
            "output_dim": h,
            "activation": activation,
            "normalization": normalization,
            "dropout_rate": dropout,
            "use_residual": False,
        })
        prev = h
    return blocks


def _default_decoder(latent_dim: int, hidden: List[int], out_dim: int, activation: str = "relu", normalization: str = "batch", dropout: float = 0.0):
    """Linear decoder: latent_dim -> hidden -> out_dim (final layer identity)."""
    blocks = _linear_stack(latent_dim, hidden + [out_dim], activation, normalization, dropout)
    if blocks:
        blocks[-1]["activation"] = "identity"
        blocks[-1]["normalization"] = "none"
        blocks[-1]["dropout_rate"] = 0.0
    return blocks


# ---------------------------- Class-based templates ---------------------------- #

class ClassicAutoencoderConfig(AutoencoderConfig):
    """Classic dense autoencoder using Linear blocks.
    Example:
        cfg = ClassicAutoencoderConfig(input_dim=784, latent_dim=64)
    """
    def __init__(self, input_dim: int = 784, latent_dim: int = 64, hidden: List[int] = (512, 256, 128), activation: str = "relu", dropout: float = 0.1, use_batch_norm: bool = True, **kwargs):
        hidden = list(hidden)
        norm = "batch" if use_batch_norm else "none"
        enc = _linear_stack(input_dim, hidden, activation, norm, dropout)
        dec = _default_decoder(latent_dim, list(reversed(hidden)), input_dim, activation, norm, dropout)
        super().__init__(
            input_dim=input_dim,
            latent_dim=latent_dim,
            activation=activation,
            dropout_rate=dropout,
            use_batch_norm=use_batch_norm,
            autoencoder_type="classic",
            encoder_blocks=enc,
            decoder_blocks=dec,
            **kwargs,
        )


class VariationalAutoencoderConfig(AutoencoderConfig):
    """Variational autoencoder (MLP). Uses VariationalBlock in the model.
    Example:
        cfg = VariationalAutoencoderConfig(input_dim=784, latent_dim=32)
    """
    def __init__(self, input_dim: int = 784, latent_dim: int = 32, hidden: List[int] = (512, 256, 128), activation: str = "relu", dropout: float = 0.1, use_batch_norm: bool = True, beta: float = 1.0, **kwargs):
        hidden = list(hidden)
        norm = "batch" if use_batch_norm else "none"
        enc = _linear_stack(input_dim, hidden, activation, norm, dropout)
        dec = _default_decoder(latent_dim, list(reversed(hidden)), input_dim, activation, norm, dropout)
        super().__init__(
            input_dim=input_dim,
            latent_dim=latent_dim,
            activation=activation,
            dropout_rate=dropout,
            use_batch_norm=use_batch_norm,
            autoencoder_type="variational",
            beta=beta,
            encoder_blocks=enc,
            decoder_blocks=dec,
            **kwargs,
        )


class TransformerAutoencoderConfig(AutoencoderConfig):
    """Transformer-style autoencoder with attention encoder and MLP decoder.
    Works with (batch, input_dim) or (batch, time, input_dim).
    Example:
        cfg = TransformerAutoencoderConfig(input_dim=256, latent_dim=128)
    """
    def __init__(self, input_dim: int = 256, latent_dim: int = 128, num_layers: int = 2, num_heads: int = 4, ffn_mult: int = 4, activation: str = "relu", dropout: float = 0.1, use_batch_norm: bool = False, **kwargs):
        norm = "batch" if use_batch_norm else "none"
        enc = []
        enc.append({"type": "linear", "input_dim": input_dim, "output_dim": input_dim, "activation": activation, "normalization": norm, "dropout_rate": dropout})
        for _ in range(num_layers):
            enc.append({"type": "attention", "input_dim": input_dim, "num_heads": num_heads, "ffn_dim": ffn_mult * input_dim, "dropout_rate": dropout})
        enc.append({"type": "linear", "input_dim": input_dim, "output_dim": input_dim, "activation": activation, "normalization": norm, "dropout_rate": dropout})
        dec = _default_decoder(latent_dim, [input_dim], input_dim, activation, norm, dropout)
        super().__init__(
            input_dim=input_dim,
            latent_dim=latent_dim,
            activation=activation,
            dropout_rate=dropout,
            use_batch_norm=use_batch_norm,
            autoencoder_type="classic",
            encoder_blocks=enc,
            decoder_blocks=dec,
            **kwargs,
        )


class RecurrentAutoencoderConfig(AutoencoderConfig):
    """Recurrent encoder (LSTM/GRU/RNN) for sequence data.
    Expected input: (batch, time, input_dim). Decoder is MLP back to features per step.
    Example:
        cfg = RecurrentAutoencoderConfig(input_dim=128, latent_dim=64, rnn_type="lstm")
    """
    def __init__(self, input_dim: int = 128, latent_dim: int = 64, rnn_type: str = "lstm", num_layers: int = 2, bidirectional: bool = False, activation: str = "relu", dropout: float = 0.1, use_batch_norm: bool = False, **kwargs):
        norm = "batch" if use_batch_norm else "none"
        enc = [{
            "type": "recurrent",
            "input_dim": input_dim,
            "hidden_size": latent_dim,
            "num_layers": num_layers,
            "rnn_type": rnn_type,
            "bidirectional": bidirectional,
            "dropout_rate": dropout,
            "output_dim": latent_dim,
        }]
        dec = _default_decoder(latent_dim, [max(latent_dim, input_dim)], input_dim, activation, norm, dropout)
        super().__init__(
            input_dim=input_dim,
            latent_dim=latent_dim,
            activation=activation,
            dropout_rate=dropout,
            use_batch_norm=use_batch_norm,
            autoencoder_type="classic",
            encoder_blocks=enc,
            decoder_blocks=dec,
            **kwargs,
        )


class ConvolutionalAutoencoderConfig(AutoencoderConfig):
    """1D convolutional encoder for sequence data; decoder is per-step MLP.
    Expected input: (batch, time, input_dim).
    Example:
        cfg = ConvolutionalAutoencoderConfig(input_dim=64, conv_channels=(64, 64))
    """
    def __init__(self, input_dim: int = 64, latent_dim: int = 64, conv_channels: List[int] = (64, 64), kernel_size: int = 3, activation: str = "relu", dropout: float = 0.0, use_batch_norm: bool = True, **kwargs):
        norm = "batch" if use_batch_norm else "none"
        enc = []
        prev = input_dim
        for ch in conv_channels:
            enc.append({"type": "conv1d", "input_dim": prev, "output_dim": ch, "kernel_size": kernel_size, "padding": "same", "activation": activation, "normalization": norm, "dropout_rate": dropout})
            prev = ch
        enc.append({"type": "linear", "input_dim": prev, "output_dim": latent_dim, "activation": activation, "normalization": norm, "dropout_rate": dropout})
        dec = _default_decoder(latent_dim, [prev], input_dim, activation, norm, dropout)
        super().__init__(
            input_dim=input_dim,
            latent_dim=latent_dim,
            activation=activation,
            dropout_rate=dropout,
            use_batch_norm=use_batch_norm,
            autoencoder_type="classic",
            encoder_blocks=enc,
            decoder_blocks=dec,
            **kwargs,
        )


class ConvAttentionAutoencoderConfig(AutoencoderConfig):
    """Mixed Conv + Attention encoder for sequence data.
    Example:
        cfg = ConvAttentionAutoencoderConfig(input_dim=64, latent_dim=64)
    """
    def __init__(self, input_dim: int = 64, latent_dim: int = 64, conv_channels: List[int] = (64,), num_heads: int = 4, activation: str = "relu", dropout: float = 0.1, use_batch_norm: bool = True, **kwargs):
        norm = "batch" if use_batch_norm else "none"
        enc = []
        prev = input_dim
        for ch in conv_channels:
            enc.append({"type": "conv1d", "input_dim": prev, "output_dim": ch, "kernel_size": 3, "padding": "same", "activation": activation, "normalization": norm, "dropout_rate": dropout})
            prev = ch
        enc.append({"type": "attention", "input_dim": prev, "num_heads": num_heads, "ffn_dim": 4 * prev, "dropout_rate": dropout})
        enc.append({"type": "linear", "input_dim": prev, "output_dim": latent_dim, "activation": activation, "normalization": norm, "dropout_rate": dropout})
        dec = _default_decoder(latent_dim, [prev], input_dim, activation, norm, dropout)
        super().__init__(
            input_dim=input_dim,
            latent_dim=latent_dim,
            activation=activation,
            dropout_rate=dropout,
            use_batch_norm=use_batch_norm,
            autoencoder_type="classic",
            encoder_blocks=enc,
            decoder_blocks=dec,
            **kwargs,
        )


class LinearRecurrentAutoencoderConfig(AutoencoderConfig):
    """Linear down-projection then Recurrent encoder.
    Example:
        cfg = LinearRecurrentAutoencoderConfig(input_dim=256, latent_dim=64, rnn_type="gru")
    """
    def __init__(self, input_dim: int = 256, latent_dim: int = 64, rnn_type: str = "gru", activation: str = "relu", dropout: float = 0.1, use_batch_norm: bool = False, **kwargs):
        norm = "batch" if use_batch_norm else "none"
        enc = [
            {"type": "linear", "input_dim": input_dim, "output_dim": latent_dim, "activation": activation, "normalization": norm, "dropout_rate": dropout},
            {"type": "recurrent", "input_dim": latent_dim, "hidden_size": latent_dim, "num_layers": 1, "rnn_type": rnn_type, "bidirectional": False, "dropout_rate": dropout, "output_dim": latent_dim},
        ]
        dec = _default_decoder(latent_dim, [], input_dim, activation, norm, dropout)
        super().__init__(
            input_dim=input_dim,
            latent_dim=latent_dim,
            activation=activation,
            dropout_rate=dropout,
            use_batch_norm=use_batch_norm,
            autoencoder_type="classic",
            encoder_blocks=enc,
            decoder_blocks=dec,
            **kwargs,
        )


class PreprocessedAutoencoderConfig(AutoencoderConfig):
    """Classic MLP AE with learnable preprocessing/inverse.
    Example:
        cfg = PreprocessedAutoencoderConfig(input_dim=64, preprocessing_type="neural_scaler")
    """
    def __init__(self, input_dim: int = 64, latent_dim: int = 32, preprocessing_type: str = "neural_scaler", hidden: List[int] = (128, 64), activation: str = "relu", dropout: float = 0.0, use_batch_norm: bool = True, **kwargs):
        norm = "batch" if use_batch_norm else "none"
        enc = _linear_stack(input_dim, list(hidden), activation, norm, dropout)
        dec = _default_decoder(latent_dim, list(reversed(list(hidden))), input_dim, activation, norm, dropout)
        super().__init__(
            input_dim=input_dim,
            latent_dim=latent_dim,
            activation=activation,
            dropout_rate=dropout,
            use_batch_norm=use_batch_norm,
            autoencoder_type="classic",
            use_learnable_preprocessing=True,
            preprocessing_type=preprocessing_type,
            encoder_blocks=enc,
            decoder_blocks=dec,
            **kwargs,
        )



class BetaVariationalAutoencoderConfig(AutoencoderConfig):
    """Beta-VAE (MLP). Like VAE but with beta > 1 controlling KL weight.
    Example:
        cfg = BetaVariationalAutoencoderConfig(input_dim=784, latent_dim=32, beta=4.0)
    """
    def __init__(self, input_dim: int = 784, latent_dim: int = 32, hidden: List[int] = (512, 256, 128), activation: str = "relu", dropout: float = 0.1, use_batch_norm: bool = True, beta: float = 4.0, **kwargs):
        hidden = list(hidden)
        norm = "batch" if use_batch_norm else "none"
        enc = _linear_stack(input_dim, hidden, activation, norm, dropout)
        dec = _default_decoder(latent_dim, list(reversed(hidden)), input_dim, activation, norm, dropout)
        super().__init__(
            input_dim=input_dim,
            latent_dim=latent_dim,
            activation=activation,
            dropout_rate=dropout,
            use_batch_norm=use_batch_norm,
            autoencoder_type="beta_vae",
            beta=beta,
            encoder_blocks=enc,
            decoder_blocks=dec,
            **kwargs,
        )


class DenoisingAutoencoderConfig(AutoencoderConfig):
    """Denoising AE: adds noise during training (handled by training loop/model if supported).
    Example:
        cfg = DenoisingAutoencoderConfig(input_dim=128, latent_dim=32, noise_factor=0.2)
    """
    def __init__(self, input_dim: int = 128, latent_dim: int = 32, hidden: List[int] = (128, 64), activation: str = "relu", dropout: float = 0.0, use_batch_norm: bool = True, noise_factor: float = 0.2, **kwargs):
        hidden = list(hidden)
        norm = "batch" if use_batch_norm else "none"
        enc = _linear_stack(input_dim, hidden, activation, norm, dropout)
        dec = _default_decoder(latent_dim, list(reversed(hidden)), input_dim, activation, norm, dropout)
        super().__init__(
            input_dim=input_dim,
            latent_dim=latent_dim,
            activation=activation,
            dropout_rate=dropout,
            use_batch_norm=use_batch_norm,
            autoencoder_type="denoising",
            noise_factor=noise_factor,
            encoder_blocks=enc,
            decoder_blocks=dec,
            **kwargs,
        )


class SparseAutoencoderConfig(AutoencoderConfig):
    """Sparse AE (typical L1 activation penalty applied in training loop).
    Example:
        cfg = SparseAutoencoderConfig(input_dim=256, latent_dim=64)
    """
    def __init__(self, input_dim: int = 256, latent_dim: int = 64, hidden: List[int] = (128, 64), activation: str = "relu", dropout: float = 0.0, use_batch_norm: bool = True, **kwargs):
        hidden = list(hidden)
        norm = "batch" if use_batch_norm else "none"
        enc = _linear_stack(input_dim, hidden, activation, norm, dropout)
        dec = _default_decoder(latent_dim, list(reversed(hidden)), input_dim, activation, norm, dropout)
        super().__init__(
            input_dim=input_dim,
            latent_dim=latent_dim,
            activation=activation,
            dropout_rate=dropout,
            use_batch_norm=use_batch_norm,
            autoencoder_type="sparse",
            encoder_blocks=enc,
            decoder_blocks=dec,
            **kwargs,
        )


class ContractiveAutoencoderConfig(AutoencoderConfig):
    """Contractive AE (requires Jacobian penalty in training loop).
    Example:
        cfg = ContractiveAutoencoderConfig(input_dim=64, latent_dim=16)
    """
    def __init__(self, input_dim: int = 64, latent_dim: int = 16, hidden: List[int] = (64, 32), activation: str = "relu", dropout: float = 0.0, use_batch_norm: bool = True, **kwargs):
        hidden = list(hidden)
        norm = "batch" if use_batch_norm else "none"
        enc = _linear_stack(input_dim, hidden, activation, norm, dropout)
        dec = _default_decoder(latent_dim, list(reversed(hidden)), input_dim, activation, norm, dropout)
        super().__init__(
            input_dim=input_dim,
            latent_dim=latent_dim,
            activation=activation,
            dropout_rate=dropout,
            use_batch_norm=use_batch_norm,
            autoencoder_type="contractive",
            encoder_blocks=enc,
            decoder_blocks=dec,
            **kwargs,
        )


__all__ = [
    "ClassicAutoencoderConfig",
    "VariationalAutoencoderConfig",
    "TransformerAutoencoderConfig",
    "RecurrentAutoencoderConfig",
    "ConvolutionalAutoencoderConfig",
    "ConvAttentionAutoencoderConfig",
    "LinearRecurrentAutoencoderConfig",
    "PreprocessedAutoencoderConfig",
    "BetaVariationalAutoencoderConfig",
    "DenoisingAutoencoderConfig",
    "SparseAutoencoderConfig",
    "ContractiveAutoencoderConfig",
]