File size: 16,607 Bytes
5b68b61 ced6e93 9d44f43 f7451e7 9d44f43 f7451e7 9d44f43 f7451e7 9d44f43 f7451e7 9d44f43 f7451e7 9d44f43 f7451e7 9d44f43 f7451e7 9d44f43 f7451e7 9d44f43 ced6e93 5b68b61 ced6e93 5b68b61 ced6e93 9d44f43 ced6e93 5b68b61 ced6e93 5b68b61 ced6e93 5b68b61 ced6e93 5b68b61 ced6e93 5b68b61 ced6e93 f87cb91 ced6e93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
---
# Metadata for Hugging Face repo card
library_name: transformers
pipeline_tag: feature-extraction
license: apache-2.0
tags:
- autoencoder
- pytorch
- reconstruction
- preprocessing
- normalizing-flow
- scaler
---
# Autoencoder Implementation for Hugging Face Transformers
A complete autoencoder implementation that integrates seamlessly with the Hugging Face Transformers ecosystem, providing all the standard functionality you expect from transformer models.
### Install-and-Use from the Hub (code repo)
If you want to use the implementation directly from the Hub code repository (without a packaged pip install), you can download the repo and add it to `sys.path`:
```python
from huggingface_hub import snapshot_download
import sys, torch
# 1) Download the code+weights for your repo “as is”
repo_dir = snapshot_download(
repo_id="amaye15/autoencoder",
repo_type="model",
allow_patterns=["*.py", "config.json", "*.safetensors"], # note the * wildcards
)
# 2) Add to import path so plain imports work
sys.path.append(repo_dir)
# 3) Import your classes from the repo code
from configuration_autoencoder import AutoencoderConfig
from modeling_autoencoder import AutoencoderForReconstruction
# 4) Load the placeholder weights from the local folder (no internet, no code refresh)
model = AutoencoderForReconstruction.from_pretrained(repo_dir)
# 5) Quick smoke test
x = torch.randn(8, 20)
out = model(input_values=x)
print("latent:", out.last_hidden_state.shape, "reconstructed:", out.reconstructed.shape)
```
## 🚀 Features
- **Full Hugging Face Integration**: Compatible with `AutoModel`, `AutoConfig`, and `AutoTokenizer` patterns
- **Standard Training Workflows**: Works with `Trainer`, `TrainingArguments`, and all HF training utilities
- **Model Hub Compatible**: Save and share models on Hugging Face Hub with `push_to_hub()`
- **Flexible Architecture**: Configurable encoder-decoder architecture with various activation functions
- **Multiple Loss Functions**: Support for MSE, BCE, L1, Huber, Smooth L1, KL Divergence, Cosine, Focal, Dice, Tversky, SSIM, and Perceptual loss
- **Multiple Autoencoder Types (7)**: Classic, Variational (VAE), Beta-VAE, Denoising, Sparse, Contractive, and Recurrent autoencoders
- **Extended Activation Functions**: 18+ activation functions including ReLU, GELU, Swish, Mish, ELU, and more
- **Learnable Preprocessing**: Neural Scaler, Normalizing Flow, MinMax Scaler (learnable), Robust Scaler (learnable), and Yeo-Johnson preprocessors (2D and 3D tensors)
- **Extensible Design**: Easy to extend for new autoencoder variants and custom loss functions
- **Production Ready**: Proper serialization, checkpointing, and inference support
## 🏗️ Architecture
The implementation consists of three main components:
### 1. AutoencoderConfig
Configuration class that inherits from `PretrainedConfig`:
- Defines model architecture parameters
- Handles validation and serialization
- Enables `AutoConfig.from_pretrained()` functionality
### 2. AutoencoderModel
Base model class that inherits from `PreTrainedModel`:
- Implements encoder-decoder architecture
- Provides latent space representation
- Returns structured outputs with `AutoencoderOutput`
### 3. AutoencoderForReconstruction
Task-specific model for reconstruction:
- Adds reconstruction loss calculation
- Compatible with `Trainer` for easy training
- Returns `AutoencoderForReconstructionOutput` with loss
## 🔧 Quick Start
### Basic Usage
```python
from configuration_autoencoder import AutoencoderConfig
from modeling_autoencoder import AutoencoderForReconstruction
import torch
# Create configuration
config = AutoencoderConfig(
input_dim=784, # Input dimensionality (e.g., 28x28 images flattened)
hidden_dims=[512, 256], # Encoder hidden layers
latent_dim=64, # Latent space dimension
activation="gelu", # Activation function (18+ options available)
reconstruction_loss="mse", # Loss function (12+ options available)
autoencoder_type="classic", # Autoencoder type (7 types available)
# Optional learnable preprocessing
use_learnable_preprocessing=True,
preprocessing_type="neural_scaler", # or "normalizing_flow", "minmax_scaler", "robust_scaler", "yeo_johnson"
)
# Create model
model = AutoencoderForReconstruction(config)
# Forward pass
input_data = torch.randn(32, 784) # Batch of 32 samples
outputs = model(input_values=input_data)
print(f"Reconstruction loss: {outputs.loss}")
print(f"Latent shape: {outputs.last_hidden_state.shape}")
print(f"Reconstructed shape: {outputs.reconstructed.shape}")
```
### Training with Hugging Face Trainer
```python
from transformers import Trainer, TrainingArguments
from torch.utils.data import Dataset
class AutoencoderDataset(Dataset):
def __init__(self, data):
self.data = torch.FloatTensor(data)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return {
"input_values": self.data[idx],
"labels": self.data[idx] # For autoencoder, input = target
}
# Prepare data
train_dataset = AutoencoderDataset(your_training_data)
val_dataset = AutoencoderDataset(your_validation_data)
# Training arguments
training_args = TrainingArguments(
output_dir="./autoencoder_output",
num_train_epochs=10,
per_device_train_batch_size=64,
per_device_eval_batch_size=64,
warmup_steps=500,
weight_decay=0.01,
logging_dir="./logs",
evaluation_strategy="steps",
eval_steps=500,
save_steps=1000,
load_best_model_at_end=True,
)
# Create trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
)
# Train
trainer.train()
# Save model
model.save_pretrained("./my_autoencoder")
config.save_pretrained("./my_autoencoder")
```
### Using AutoModel Framework
```python
from register_autoencoder import register_autoencoder_models
from transformers import AutoConfig, AutoModel
# Register models with AutoModel framework
register_autoencoder_models()
# Now you can use standard HF patterns
config = AutoConfig.from_pretrained("./my_autoencoder")
model = AutoModel.from_pretrained("./my_autoencoder")
# Use the model
outputs = model(input_values=your_data)
```
## ⚙️ Configuration Options
The `AutoencoderConfig` class supports extensive customization:
```python
config = AutoencoderConfig(
input_dim=784, # Input dimension
hidden_dims=[512, 256, 128], # Encoder hidden layers
latent_dim=64, # Latent space dimension
activation="gelu", # Activation function (see full list below)
dropout_rate=0.1, # Dropout rate (0.0 to 1.0)
use_batch_norm=True, # Use batch normalization
tie_weights=False, # Tie encoder/decoder weights
reconstruction_loss="mse", # Loss function (see full list below)
autoencoder_type="variational", # Autoencoder type (see types below)
beta=0.5, # Beta parameter for β-VAE
temperature=1.0, # Temperature for Gumbel softmax
noise_factor=0.1, # Noise factor for denoising AE
# Recurrent autoencoder parameters
rnn_type="lstm", # RNN type: "lstm", "gru", "rnn"
num_layers=2, # Number of RNN layers
bidirectional=True, # Bidirectional encoding
sequence_length=None, # Fixed sequence length (None for variable)
teacher_forcing_ratio=0.5, # Teacher forcing ratio during training
# Learnable preprocessing parameters
use_learnable_preprocessing=False, # Enable learnable preprocessing
preprocessing_type="none", # "none", "neural_scaler", "normalizing_flow"
preprocessing_hidden_dim=64, # Hidden dimension for preprocessing networks
preprocessing_num_layers=2, # Number of layers in preprocessing networks
learn_inverse_preprocessing=True, # Learn inverse transformation
flow_coupling_layers=4, # Number of coupling layers for flows
)
```
### 🎛️ Available Activation Functions
**Standard Activations:**
- `relu`, `leaky_relu`, `relu6`, `elu`, `prelu`
- `tanh`, `sigmoid`, `hardsigmoid`, `hardtanh`
- `gelu`, `swish`, `silu`, `hardswish`
- `mish`, `softplus`, `softsign`, `tanhshrink`, `threshold`
### 📊 Available Loss Functions
**Regression Losses:**
- `mse` - Mean Squared Error
- `l1` - L1/MAE Loss
- `huber` - Huber Loss
- `smooth_l1` - Smooth L1 Loss
**Classification/Probability Losses:**
- `bce` - Binary Cross Entropy
- `kl_div` - KL Divergence
- `focal` - Focal Loss
**Similarity Losses:**
- `cosine` - Cosine Similarity Loss
- `ssim` - Structural Similarity Loss
- `perceptual` - Perceptual Loss
**Segmentation Losses:**
- `dice` - Dice Loss
- `tversky` - Tversky Loss
### 🏗️ Available Autoencoder Types
**Classic Autoencoder (`classic`)**
- Standard encoder-decoder architecture
- Direct reconstruction loss minimization
**Variational Autoencoder (`variational`)**
- Probabilistic latent space with mean and variance
- KL divergence regularization
- Reparameterization trick for sampling
**Beta-VAE (`beta_vae`)**
- Variational autoencoder with adjustable β parameter
- Better disentanglement of latent factors
**Denoising Autoencoder (`denoising`)**
- Adds noise to input during training
- Learns robust representations
- Configurable noise factor
**Sparse Autoencoder (`sparse`)**
- Encourages sparse latent representations
- L1 regularization on latent activations
- Useful for feature selection
**Contractive Autoencoder (`contractive`)**
- Penalizes large gradients of latent w.r.t. input
- Learns smooth manifold representations
- Robust to small input perturbations
**Recurrent Autoencoder (`recurrent`)**
- LSTM/GRU/RNN encoder-decoder architecture
- Bidirectional encoding for better sequence representations
- Variable length sequence support with padding
- Teacher forcing during training for stable learning
- Sequence-to-sequence reconstruction
```
## 📊 Model Outputs
### AutoencoderOutput
The base model `AutoencoderModel` returns the following output:
```
```python
@dataclass
class AutoencoderOutput(ModelOutput):
last_hidden_state: torch.FloatTensor = None # Latent representation
reconstructed: torch.FloatTensor = None # Reconstructed input
hidden_states: Tuple[torch.FloatTensor] = None # Intermediate states
attentions: Tuple[torch.FloatTensor] = None # Not used
```
### AutoencoderForReconstructionOutput
```python
@dataclass
class AutoencoderForReconstructionOutput(ModelOutput):
loss: torch.FloatTensor = None # Reconstruction loss
reconstructed: torch.FloatTensor = None # Reconstructed input
last_hidden_state: torch.FloatTensor = None # Latent representation
hidden_states: Tuple[torch.FloatTensor] = None # Intermediate states
```
## 🔬 Advanced Usage
### Custom Loss Functions
You can easily extend the model with custom loss functions:
```python
class CustomAutoencoder(AutoencoderForReconstruction):
def _compute_reconstruction_loss(self, reconstructed, target):
# Custom loss implementation
return your_custom_loss(reconstructed, target)
```
### Recurrent Autoencoder for Sequences
Perfect for time series, text, and sequential data:
```python
config = AutoencoderConfig(
input_dim=50, # Feature dimension per timestep
latent_dim=32, # Compressed representation size
autoencoder_type="recurrent",
rnn_type="lstm", # or "gru", "rnn"
num_layers=2, # Number of RNN layers
bidirectional=True, # Bidirectional encoding
teacher_forcing_ratio=0.7, # Teacher forcing during training
sequence_length=None # Variable length sequences
)
# Usage with sequence data
model = AutoencoderForReconstruction(config)
sequence_data = torch.randn(batch_size, seq_len, input_dim)
outputs = model(input_values=sequence_data)
```
### Learnable Preprocessing
Deep learning-based data normalization that adapts to your data:
```python
# Neural Scaler - Learnable alternative to StandardScaler
config = AutoencoderConfig(
input_dim=20,
latent_dim=10,
use_learnable_preprocessing=True,
preprocessing_type="neural_scaler",
preprocessing_hidden_dim=64
)
# Normalizing Flow - Invertible transformations
config = AutoencoderConfig(
input_dim=20,
latent_dim=10,
use_learnable_preprocessing=True,
preprocessing_type="normalizing_flow",
flow_coupling_layers=4
)
# Works with all autoencoder types and sequence data
model = AutoencoderForReconstruction(config)
outputs = model(input_values=data)
print(f"Preprocessing loss: {outputs.preprocessing_loss}")
```
```python
# Learnable MinMax Scaler - scales to [0, 1] with learnable bounds
config = AutoencoderConfig(
input_dim=20,
latent_dim=10,
use_learnable_preprocessing=True,
preprocessing_type="minmax_scaler",
)
# Learnable Robust Scaler - robust to outliers using median/IQR
config = AutoencoderConfig(
input_dim=20,
latent_dim=10,
use_learnable_preprocessing=True,
preprocessing_type="robust_scaler",
)
# Learnable Yeo-Johnson - power transform for skewed distributions
config = AutoencoderConfig(
input_dim=20,
latent_dim=10,
use_learnable_preprocessing=True,
preprocessing_type="yeo_johnson",
)
```
### Variational Autoencoder Extension
The configuration supports variational autoencoders:
```python
config = AutoencoderConfig(
autoencoder_type="variational",
beta=0.5, # β-VAE parameter
# ... other parameters
)
```
### Integration with Datasets Library
```python
from datasets import Dataset
# Convert your data to HF Dataset
dataset = Dataset.from_dict({
"input_values": your_data_list
})
# Use with Trainer
trainer = Trainer(
model=model,
train_dataset=dataset,
# ... other arguments
)
```
## 📁 Project Structure
```
autoencoder/
├── __init__.py # Package initialization
├── configuration_autoencoder.py # Configuration class
├── modeling_autoencoder.py # Model implementations
├── register_autoencoder.py # AutoModel registration
├── pyproject.toml # Project metadata and dependencies
└── README.md # This file
```
## 🤝 Contributing
This implementation follows Hugging Face conventions and can be easily extended:
1. **Adding new architectures**: Extend `AutoencoderModel` or create new model classes
2. **Custom configurations**: Add parameters to `AutoencoderConfig`
3. **Task-specific heads**: Create new classes like `AutoencoderForReconstruction`
4. **Integration**: Register new models with the AutoModel framework
## 📚 References
- [Hugging Face Transformers Documentation](https://huggingface.co/docs/transformers)
- [Custom Models Guide](https://huggingface.co/docs/transformers/custom_models)
- [AutoModel Documentation](https://huggingface.co/docs/transformers/model_doc/auto)
## 🎯 Use Cases
This autoencoder implementation is perfect for:
- **Dimensionality Reduction**: Compress high-dimensional data to lower dimensions
- **Anomaly Detection**: Identify outliers based on reconstruction error
- **Data Denoising**: Remove noise from corrupted data
- **Feature Learning**: Learn meaningful representations for downstream tasks
- **Data Generation**: Generate new samples similar to training data
- **Pretraining**: Initialize encoders for other tasks
## 🔍 Model Comparison
| Feature | Standard PyTorch | This Implementation |
|---------|------------------|-------------------|
| HF Integration | ❌ | ✅ |
| AutoModel Support | ❌ | ✅ |
| Trainer Compatible | ❌ | ✅ |
| Hub Integration | ❌ | ✅ |
| Config Management | Manual | ✅ Automatic |
| Serialization | Manual | ✅ Built-in |
| Checkpointing | Manual | ✅ Built-in |
## 🚀 Performance Tips
1. **Batch Size**: Use larger batch sizes for better GPU utilization
2. **Learning Rate**: Start with 1e-3 and adjust based on convergence
3. **Architecture**: Gradually decrease hidden dimensions for better compression
4. **Regularization**: Use dropout and batch normalization for better generalization
5. **Loss Function**: Choose appropriate loss based on your data type
## 📄 License
This implementation is provided as an example and follows the same license terms as Hugging Face Transformers.
|