File size: 19,724 Bytes
5b68b61
 
 
 
 
 
 
 
 
 
 
 
 
 
8abd44b
ced6e93
8abd44b
ced6e93
8abd44b
 
 
 
 
 
9d44f43
8abd44b
9d44f43
 
 
 
 
 
f7451e7
9d44f43
8abd44b
9d44f43
 
 
 
f7451e7
9d44f43
 
f7451e7
 
9d44f43
 
8abd44b
ced6e93
8abd44b
 
 
ced6e93
8abd44b
 
ced6e93
8abd44b
 
 
 
ced6e93
8abd44b
 
 
 
 
 
 
 
 
 
ced6e93
8abd44b
ced6e93
8abd44b
ced6e93
8abd44b
ced6e93
8abd44b
 
ced6e93
 
8abd44b
 
 
 
 
 
 
 
 
 
ced6e93
 
8abd44b
 
ced6e93
 
8abd44b
 
 
 
 
 
 
 
ced6e93
8abd44b
 
ced6e93
8abd44b
 
 
 
 
 
 
 
 
 
 
ced6e93
 
8abd44b
 
ced6e93
 
8abd44b
 
 
 
 
 
 
 
 
 
 
ced6e93
8abd44b
 
ced6e93
8abd44b
 
 
 
 
 
ced6e93
 
8abd44b
ced6e93
8abd44b
ced6e93
8abd44b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced6e93
 
 
8abd44b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced6e93
 
8abd44b
 
 
 
 
 
 
 
 
 
 
 
ced6e93
8abd44b
 
 
 
5b68b61
8abd44b
5b68b61
8abd44b
 
 
 
 
 
 
 
ced6e93
8abd44b
ced6e93
8abd44b
 
 
 
 
 
 
 
ced6e93
 
8abd44b
 
 
 
 
ced6e93
8abd44b
 
 
 
 
 
 
ced6e93
8abd44b
 
 
 
 
ced6e93
 
8abd44b
 
ced6e93
 
8abd44b
ced6e93
8abd44b
 
 
ced6e93
 
8abd44b
 
 
ced6e93
 
8abd44b
 
 
 
 
 
ced6e93
8abd44b
ced6e93
8abd44b
ced6e93
8abd44b
 
ced6e93
8abd44b
 
 
ced6e93
8abd44b
 
 
 
ced6e93
 
8abd44b
5b68b61
8abd44b
 
 
 
 
 
 
 
 
 
 
 
5b68b61
8abd44b
 
 
 
 
5b68b61
8abd44b
 
5b68b61
 
8abd44b
 
 
5b68b61
8abd44b
 
 
ced6e93
8abd44b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced6e93
 
8abd44b
 
 
 
 
ced6e93
8abd44b
 
 
ced6e93
8abd44b
 
 
 
 
 
 
 
 
 
 
ced6e93
8abd44b
 
 
 
 
 
 
 
 
 
ced6e93
8abd44b
ced6e93
 
8abd44b
 
ced6e93
 
8abd44b
 
ced6e93
8abd44b
 
 
 
ced6e93
 
8abd44b
 
 
 
 
ced6e93
 
8abd44b
ced6e93
8abd44b
ced6e93
8abd44b
 
 
 
ced6e93
8abd44b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced6e93
8abd44b
 
 
 
 
ced6e93
8abd44b
ced6e93
 
8abd44b
 
ced6e93
8abd44b
 
 
 
ced6e93
8abd44b
 
 
 
 
 
 
 
 
 
 
ced6e93
8abd44b
 
 
 
 
 
 
ced6e93
8abd44b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
---
# Metadata for Hugging Face repo card
library_name: transformers
pipeline_tag: feature-extraction
license: apache-2.0
tags:
  - autoencoder
  - pytorch
  - reconstruction
  - preprocessing
  - normalizing-flow
  - scaler
---

## Autoencoder for Hugging Face Transformers (Block-based)

A flexible, production-grade Autoencoder implementation built to fit naturally into the Transformers ecosystem. It supports a new block-based architecture with ready-to-use templates for classic MLP, VAE/beta-VAE, Transformer, Recurrent, Convolutional, mixed hybrids, and learnable preprocessing.

### Key features
- Block-based architecture: Linear, Attention, Recurrent (LSTM/GRU), Convolutional, Variational blocks
- Class-based configuration presets in template.py for quick starts
- Variational and beta-VAE variants (KL-controlled)
- Learnable preprocessing and inverse transforms
- Hugging Face-compatible config/model API and from_pretrained/save_pretrained

## Install and load from the Hub (code repo)

```python
from huggingface_hub import snapshot_download
import sys, torch

repo_dir = snapshot_download(
    repo_id="amaye15/autoencoder",
    repo_type="model",
    allow_patterns=["*.py", "config.json", "*.safetensors"],
)
sys.path.append(repo_dir)

from modeling_autoencoder import AutoencoderForReconstruction
model = AutoencoderForReconstruction.from_pretrained(repo_dir)

x = torch.randn(8, 20)
out = model(input_values=x)
print("latent:", out.last_hidden_state.shape, "reconstructed:", out.reconstructed.shape)
```

## Quickstart with class-based templates

```python
from modeling_autoencoder import AutoencoderModel
from template import ClassicAutoencoderConfig

cfg = ClassicAutoencoderConfig(input_dim=784, latent_dim=64)
model = AutoencoderModel(cfg)

x = torch.randn(4, 784)
out = model(x, return_dict=True)
print(out.last_hidden_state.shape, out.reconstructed.shape)
```

### Available presets (template.py)
- ClassicAutoencoderConfig: Dense MLP AE
- VariationalAutoencoderConfig: VAE with KL regularization
- BetaVariationalAutoencoderConfig: beta-VAE (beta > 1)
- TransformerAutoencoderConfig: Attention-based encoder for sequences
- RecurrentAutoencoderConfig: LSTM/GRU encoder for sequences
- ConvolutionalAutoencoderConfig: 1D Conv encoder for sequences
- ConvAttentionAutoencoderConfig: Mixed Conv + Attention encoder
- LinearRecurrentAutoencoderConfig: Linear down-projection + RNN
- PreprocessedAutoencoderConfig: MLP AE with learnable preprocessing

## Block-based architecture

The autoencoder uses a modular block system where you define encoder_blocks and decoder_blocks as lists of dictionaries. Each block dict specifies its type and parameters.

### Available block types

#### LinearBlock
Dense layer with optional normalization, activation, dropout, and residual connections.

```python
{
    "type": "linear",
    "input_dim": 256,
    "output_dim": 128,
    "activation": "relu",           # relu, gelu, tanh, sigmoid, etc.
    "normalization": "batch",       # batch, layer, group, instance, none
    "dropout_rate": 0.1,
    "use_residual": False,          # adds skip connection if input_dim == output_dim
    "residual_scale": 1.0
}
```

#### AttentionBlock
Multi-head self-attention with feed-forward network. Works with 2D (B, D) or 3D (B, T, D) inputs.

```python
{
    "type": "attention",
    "input_dim": 128,
    "num_heads": 8,
    "ffn_dim": 512,                 # if None, defaults to 4 * input_dim
    "dropout_rate": 0.1
}
```

#### RecurrentBlock
LSTM, GRU, or vanilla RNN encoder. Outputs final hidden state or all timesteps.

```python
{
    "type": "recurrent",
    "input_dim": 64,
    "hidden_size": 128,
    "num_layers": 2,
    "rnn_type": "lstm",             # lstm, gru, rnn
    "bidirectional": True,
    "dropout_rate": 0.1,
    "output_dim": 128               # final output dimension
}
```

#### ConvolutionalBlock
1D convolution for sequence data. Expects 3D input (B, T, D).

```python
{
    "type": "conv1d",
    "input_dim": 64,                # input channels
    "output_dim": 128,              # output channels
    "kernel_size": 3,
    "padding": "same",              # "same" or integer
    "activation": "relu",
    "normalization": "batch",
    "dropout_rate": 0.1
}
```

#### VariationalBlock
Produces mu and logvar for VAE reparameterization. Used internally by the model when autoencoder_type="variational".

```python
{
    "type": "variational",
    "input_dim": 128,
    "latent_dim": 64
}
```

### Custom configuration examples

#### Mixed architecture (Conv + Attention + Linear)
```python
from configuration_autoencoder import AutoencoderConfig

enc = [
    # 1D convolution for local patterns
    {"type": "conv1d", "input_dim": 64, "output_dim": 128, "kernel_size": 3, "padding": "same", "activation": "relu"},
    {"type": "conv1d", "input_dim": 128, "output_dim": 128, "kernel_size": 3, "padding": "same", "activation": "relu"},

    # Self-attention for global dependencies
    {"type": "attention", "input_dim": 128, "num_heads": 8, "ffn_dim": 512, "dropout_rate": 0.1},

    # Final linear projection
    {"type": "linear", "input_dim": 128, "output_dim": 64, "activation": "relu", "normalization": "batch"}
]

dec = [
    {"type": "linear", "input_dim": 32, "output_dim": 64, "activation": "relu", "normalization": "batch"},
    {"type": "linear", "input_dim": 64, "output_dim": 128, "activation": "relu", "normalization": "batch"},
    {"type": "linear", "input_dim": 128, "output_dim": 64, "activation": "identity", "normalization": "none"}
]

cfg = AutoencoderConfig(
    input_dim=64,
    latent_dim=32,
    autoencoder_type="classic",
    encoder_blocks=enc,
    decoder_blocks=dec
)
```

#### Hierarchical encoder (multiple scales)
```python
enc = [
    # Local features
    {"type": "linear", "input_dim": 784, "output_dim": 512, "activation": "relu", "normalization": "batch"},
    {"type": "linear", "input_dim": 512, "output_dim": 256, "activation": "relu", "normalization": "batch"},

    # Mid-level features with residual
    {"type": "linear", "input_dim": 256, "output_dim": 256, "activation": "relu", "normalization": "batch", "use_residual": True},
    {"type": "linear", "input_dim": 256, "output_dim": 256, "activation": "relu", "normalization": "batch", "use_residual": True},

    # High-level features
    {"type": "linear", "input_dim": 256, "output_dim": 128, "activation": "relu", "normalization": "batch"},
    {"type": "linear", "input_dim": 128, "output_dim": 64, "activation": "relu", "normalization": "batch"}
]
```

#### Sequence-to-sequence with recurrent encoder
```python
enc = [
    {"type": "recurrent", "input_dim": 100, "hidden_size": 128, "num_layers": 2, "rnn_type": "lstm", "bidirectional": True, "output_dim": 256},
    {"type": "linear", "input_dim": 256, "output_dim": 128, "activation": "tanh", "normalization": "layer"}
]

dec = [
    {"type": "linear", "input_dim": 64, "output_dim": 128, "activation": "tanh", "normalization": "layer"},
    {"type": "linear", "input_dim": 128, "output_dim": 100, "activation": "identity", "normalization": "none"}
]
```

### Input shape handling
- **2D inputs (B, D)**: Work with Linear blocks directly. Attention/Recurrent/Conv blocks treat as (B, 1, D)
- **3D inputs (B, T, D)**: Work with all block types. Linear blocks operate per-timestep
- **Output shapes**: Decoder typically outputs same shape as input. For sequence models, final shape depends on decoder architecture

## Configuration (configuration_autoencoder.py)

AutoencoderConfig is the core configuration class. Important fields:
- input_dim: feature dimension (D)
- latent_dim: latent size
- encoder_blocks, decoder_blocks: block lists (see block types above)
- activation, dropout_rate, use_batch_norm: defaults used by some presets
- autoencoder_type: classic | variational | beta_vae | denoising | sparse | contractive | recurrent
- Reconstruction losses: mse | bce | l1 | huber | smooth_l1 | kl_div | cosine | focal | dice | tversky | ssim | perceptual
- Preprocessing: use_learnable_preprocessing, preprocessing_type, learn_inverse_preprocessing

Example:
```python
from configuration_autoencoder import AutoencoderConfig
cfg = AutoencoderConfig(
    input_dim=128,
    latent_dim=32,
    autoencoder_type="variational",
    encoder_blocks=[{"type": "linear", "input_dim": 128, "output_dim": 64, "activation": "relu"}],
    decoder_blocks=[{"type": "linear", "input_dim": 32, "output_dim": 128, "activation": "identity", "normalization": "none"}],
)
```

## Models (modeling_autoencoder.py)

Main classes:
- AutoencoderModel: core module exposing forward that returns last_hidden_state (latent) and reconstructed
- AutoencoderForReconstruction: HF-compatible model wrapper with from_pretrained/save_pretrained

Forward usage:
```python
from modeling_autoencoder import AutoencoderModel
x = torch.randn(8, 20)
out = model(x, return_dict=True)
print(out.last_hidden_state.shape, out.reconstructed.shape)
```

### Variational behavior
If cfg.autoencoder_type == "variational" or "beta_vae":
- The model uses an internal VariationalBlock to compute mu and logvar
- Samples z during training; uses mu during eval
- KL term available via model._mu/_logvar (exposed in hidden_states when requested)

```python
out = model(x, return_dict=True, output_hidden_states=True)
latent, mu, logvar = out.hidden_states
```

## Preprocessing (preprocessing.py)

- PreprocessingBlock wraps LearnablePreprocessor and can be placed before/after the core encoder/decoder
- When enabled via config.use_learnable_preprocessing, the model constructs two blocks: pre (forward) and post (inverse)
- The block tracks reg_loss, which is added to preprocessing_loss in the model output

```python
from template import PreprocessedAutoencoderConfig
cfg = PreprocessedAutoencoderConfig(input_dim=64, latent_dim=32, preprocessing_type="neural_scaler")
model = AutoencoderModel(cfg)
```

## Utilities (utils.py)

Common helpers:
- _get_activation(name)
- _get_norm(name, num_groups=None)
- _flatten_3d_to_2d(x), _maybe_restore_3d(x, ref)

## Training examples

### Basic MSE reconstruction
```python
from modeling_autoencoder import AutoencoderModel
from template import ClassicAutoencoderConfig

cfg = ClassicAutoencoderConfig(input_dim=784, latent_dim=64)
model = AutoencoderModel(cfg)
opt = torch.optim.Adam(model.parameters(), lr=1e-3)

for x in dataloader:  # x: (B, 784)
    out = model(x, return_dict=True)
    loss = torch.nn.functional.mse_loss(out.reconstructed, x)
    loss.backward(); opt.step(); opt.zero_grad()
```

### VAE with KL term
```python
from template import VariationalAutoencoderConfig
cfg = VariationalAutoencoderConfig(input_dim=784, latent_dim=32)
model = AutoencoderModel(cfg)

for x in dataloader:
    out = model(x, return_dict=True, output_hidden_states=True)
    recon = torch.nn.functional.mse_loss(out.reconstructed, x)
    _, mu, logvar = out.hidden_states
    kl = -0.5 * torch.mean(1 + logvar - mu.pow(2) - logvar.exp())
    loss = recon + cfg.beta * kl
    loss.backward(); opt.step(); opt.zero_grad()
```

### Sequence reconstruction (Conv + Attention)
```python
from template import ConvAttentionAutoencoderConfig
cfg = ConvAttentionAutoencoderConfig(input_dim=64, latent_dim=64)
model = AutoencoderModel(cfg)

x = torch.randn(8, 50, 64)  # (B, T, D)
out = model(x, return_dict=True)
```

## End-to-end saving/loading
```python
from modeling_autoencoder import AutoencoderForReconstruction

model.save_pretrained("./my_ae")
reloaded = AutoencoderForReconstruction.from_pretrained("./my_ae")
```

## Troubleshooting
- Check that block input_dim/output_dim align across adjacent blocks
- For attention/recurrent/conv blocks, prefer 3D inputs (B, T, D). 2D inputs are coerced to (B, 1, D)
- For variational/beta-VAE, ensure latent_dim is set; KL term available via hidden states
- When preprocessing is enabled, preprocessing_loss is included in the output for logging/regularization


## Full AutoencoderConfig reference

Below is a comprehensive reference for all fields in configuration_autoencoder.AutoencoderConfig. Some fields are primarily used by presets or advanced features but are documented here for completeness.

- input_dim (int, default=784): Input feature dimension D. For sequences, D is per-timestep feature size.
- hidden_dims (List[int], default=[512,256,128]): Legacy convenience list for simple MLPs. Prefer encoder_blocks.
- encoder_blocks (List[dict] | None): Block list for encoder. See Block-based architecture for block schemas.
- decoder_blocks (List[dict] | None): Block list for decoder. If omitted, model may derive a simple decoder from hidden_dims.
- latent_dim (int, default=64): Latent space dimension.
- activation (str, default="relu"): Default activation for Linear blocks when using legacy paths or presets.
- dropout_rate (float, default=0.1): Default dropout used in presets and some layers.
- use_batch_norm (bool, default=True): Default normalization flag used in presets ("batch" if True, else "none").
- tie_weights (bool, default=False): If True, share/tie encoder and decoder weights (feature not always active depending on architecture).
- reconstruction_loss (str, default="mse"): Which loss to use in AutoencoderForReconstruction. One of:
  - "mse", "bce", "l1", "huber", "smooth_l1", "kl_div", "cosine", "focal", "dice", "tversky", "ssim", "perceptual".
- autoencoder_type (str, default="classic"): Architecture variant. One of:
  - "classic", "variational", "beta_vae", "denoising", "sparse", "contractive", "recurrent".
- beta (float, default=1.0): KL weight for VAE/beta-VAE.
- temperature (float, default=1.0): Reserved for temperature-based operations.
- noise_factor (float, default=0.1): Denoising strength used by Denoising variants.
- rnn_type (str, default="lstm"): For recurrent variants. One of: "lstm", "gru", "rnn".
- num_layers (int, default=2): Number of RNN layers for recurrent variants.
- bidirectional (bool, default=True): Whether RNN is bidirectional in recurrent variants.
- sequence_length (int | None, default=None): Optional fixed sequence length; if None, variable length is supported.
- teacher_forcing_ratio (float, default=0.5): For recurrent decoders that use teacher forcing.
- use_learnable_preprocessing (bool, default=False): Enable learnable preprocessing.
- preprocessing_type (str, default="none"): One of: "none", "neural_scaler", "normalizing_flow", "minmax_scaler", "robust_scaler", "yeo_johnson".
- preprocessing_hidden_dim (int, default=64): Hidden size for preprocessing networks.
- preprocessing_num_layers (int, default=2): Number of layers for preprocessing networks.
- learn_inverse_preprocessing (bool, default=True): Whether to learn inverse transform for reconstruction.
- flow_coupling_layers (int, default=4): Number of coupling layers for normalizing flows.

Derived helpers and flags:
- has_block_lists: True if either encoder_blocks or decoder_blocks is provided.
- is_variational: True if autoencoder_type in {"variational", "beta_vae"}.
- is_denoising, is_sparse, is_contractive, is_recurrent: Variant flags.
- has_preprocessing: True if preprocessing enabled and type != "none".

Validation notes:
- activation must be one of the supported list in configuration_autoencoder.py
- reconstruction_loss must be one of the supported list
- Many numeric parameters are validated to be positive or within [0,1]

## Training with Hugging Face Trainer

The AutoencoderForReconstruction model computes reconstruction loss internally using config.reconstruction_loss. For VAEs/beta-VAEs, it adds the KL term scaled by config.beta. You can plug it directly into transformers.Trainer.

```python
from transformers import Trainer, TrainingArguments
from modeling_autoencoder import AutoencoderForReconstruction
from template import ClassicAutoencoderConfig
import torch
from torch.utils.data import Dataset

# 1) Config and model
cfg = ClassicAutoencoderConfig(input_dim=64, latent_dim=16)
model = AutoencoderForReconstruction(cfg)

# 2) Dummy dataset (replace with your own)
class ToyAEDataset(Dataset):
    def __init__(self, n=1024, d=64):
        self.x = torch.randn(n, d)
    def __len__(self):
        return self.x.size(0)
    def __getitem__(self, idx):
        xi = self.x[idx]
        return {"input_values": xi, "labels": xi}

train_ds = ToyAEDataset()

# 3) TrainingArguments
args = TrainingArguments(
    output_dir="./ae-trainer",
    per_device_train_batch_size=64,
    learning_rate=1e-3,
    num_train_epochs=3,
    logging_steps=50,
    save_steps=200,
    report_to=[],  # disable wandb if not configured
)

# 4) Trainer
trainer = Trainer(
    model=model,
    args=args,
    train_dataset=train_ds,
)

# 5) Train
trainer.train()

# 6) Use the model
x = torch.randn(4, 64)
out = model(input_values=x, return_dict=True)
print(out.last_hidden_state.shape, out.reconstructed.shape)
```

Notes:
- The dataset must yield dicts with "input_values" and optionally "labels"; if labels are missing, the model uses input as the target.
- For sequence inputs, shape is (B, T, D). For simple vectors, (B, D).
- Set cfg.reconstruction_loss to e.g. "bce" to switch the internal loss (the decoder head applies sigmoid when BCE is used).
- For VAE/beta-VAE, use VariationalAutoencoderConfig/BetaVariationalAutoencoderConfig.


### Example using AutoencoderConfig directly

Below shows how to define a configuration purely with block dicts using AutoencoderConfig, without the template classes.

```python
from configuration_autoencoder import AutoencoderConfig
from modeling_autoencoder import AutoencoderModel
import torch

# Encoder: Linear -> Attention -> Linear
enc = [
    {"type": "linear", "input_dim": 128, "output_dim": 128, "activation": "relu", "normalization": "batch", "dropout_rate": 0.1},
    {"type": "attention", "input_dim": 128, "num_heads": 4, "ffn_dim": 512, "dropout_rate": 0.1},
    {"type": "linear", "input_dim": 128, "output_dim": 64, "activation": "relu", "normalization": "batch"},
]

# Decoder: Linear -> Linear (final identity)
dec = [
    {"type": "linear", "input_dim": 32, "output_dim": 64, "activation": "relu", "normalization": "batch"},
    {"type": "linear", "input_dim": 64, "output_dim": 128, "activation": "identity", "normalization": "none"},
]

cfg = AutoencoderConfig(
    input_dim=128,
    latent_dim=32,
    encoder_blocks=enc,
    decoder_blocks=dec,
    autoencoder_type="classic",
)

model = AutoencoderModel(cfg)
x = torch.randn(4, 128)
out = model(x, return_dict=True)
print(out.last_hidden_state.shape, out.reconstructed.shape)
```

For a variational model, set autoencoder_type="variational" and the model will internally use a VariationalBlock for mu/logvar and sampling.


## Learnable preprocessing
Enable learnable preprocessing and its inverse with the PreprocessedAutoencoderConfig class or via flags.

```python
from template import PreprocessedAutoencoderConfig
cfg = PreprocessedAutoencoderConfig(input_dim=64, latent_dim=32, preprocessing_type="neural_scaler")
```

Supported preprocessing_type values include: "neural_scaler", "normalizing_flow", "minmax_scaler", "robust_scaler", "yeo_johnson".

## Saving and loading
```python
from modeling_autoencoder import AutoencoderForReconstruction

# Save
model.save_pretrained("./my_ae")
# Load
reloaded = AutoencoderForReconstruction.from_pretrained("./my_ae")
```

## Reference
Core modules:
- configuration_autoencoder.AutoencoderConfig
- modeling_autoencoder.AutoencoderModel, AutoencoderForReconstruction
- blocks: BlockFactory, BlockSequence, Linear/Attention/Recurrent/Convolutional/Variational blocks
- preprocessing: PreprocessingBlock (learnable preprocessing wrapper)
- template: class-based presets listed above

## License
Apache-2.0 (see LICENSE)