amentaga-nttd commited on
Commit
f7708ef
·
verified ·
1 Parent(s): 9da25fa

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,566 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:10
8
+ - loss:MatryoshkaLoss
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: nreimers/albert-small-v2
11
+ widget:
12
+ - source_sentence: What processes are used to separate the raw liquid mix from natural
13
+ gas in a gas recycling plant?
14
+ sentences:
15
+ - '2016 ►M43 (*1) ◄ 21 September 2017 ►M43 (*2) ◄ [▼M28](./../../../legal-content/EN/AUTO/?uri=celex:32014R0895
16
+ "32014R0895: INSERTED") 23. Formaldehyde, oligomeric reaction products with aniline
17
+ (technical MDA) EC No: 500-036-1 CAS No: 25214-70-4 Carcinogenic (category 1B)
18
+ 22 February 2016 ►M43 (*1) ◄ 22 August 2017 ►M43 (*2) ◄ — 24. Arsenic acid EC
19
+ No: 231-901-9 CAS No: 7778-39-4 Carcinogenic (category 1A) 22 February 2016 22
20
+ August 2017 — 25. Bis(2-methoxyethyl) ether (diglyme) EC No: 203-924-4 CAS No:
21
+ 111-96-6 Toxic for reproduction (category 1B) 22 February 2016 ►M43 (*1) ◄ 22
22
+ August 2017 ►M43 (*2) ◄ — 26. 1,2-dichloroethane (EDC) EC No: 203-458-1 CAS No:
23
+ 107-06-2 Carcinogenic (category 1B) 22 May 2016 22 November 2017 — 27.'
24
+ - '1. Member States shall ensure that their competent authorities establish at least
25
+ one AI regulatory sandbox at national level, which shall be operational by 2 August
26
+ 2026. That sandbox may also be established jointly with the competent authorities
27
+ of other Member States. The Commission may provide technical support, advice and
28
+ tools for the establishment and operation of AI regulatory sandboxes.
29
+
30
+
31
+ The obligation under the first subparagraph may also be fulfilled by participating
32
+ in an existing sandbox in so far as that participation provides an equivalent
33
+ level of national coverage for the participating Member States.'
34
+ - and that boils in a range of approximately 149 °C to 205 °C.) 649-345-00-4 232-489-3
35
+ 8052-41-3 P Natural gas condensates (petroleum); Low boiling point naphtha — unspecified
36
+ (A complex combination of hydrocarbons separated as a liquid from natural gas
37
+ in a surface separator by retrograde condensation. It consists mainly of hydrocarbons
38
+ having carbon numbers predominantly in the range of C2 to C20. It is a liquid
39
+ at atmospheric temperature and pressure.) 649-346-00-X 265-047-3 64741-47-5 P
40
+ Natural gas (petroleum), raw liquid mix; Low boiling point naphtha — unspecified
41
+ (A complex combination of hydrocarbons separated as a liquid from natural gas
42
+ in a gas recycling plant by processes such as refrigeration or absorption. It
43
+ consists mainly of
44
+ - source_sentence: What should the report on income tax information include as per
45
+ Article 48c?
46
+ sentences:
47
+ - '(d)
48
+
49
+
50
+ seal any business premises and books or records for the period of time of, and
51
+ to the extent necessary for, the inspection.
52
+
53
+
54
+ 3.
55
+
56
+
57
+ The undertaking or association of undertakings shall submit to inspections ordered
58
+ by decision of the Commission. The officials and other accompanying persons authorised
59
+ by the Commission to conduct an inspection shall exercise their powers upon production
60
+ of a Commission decision:
61
+
62
+
63
+ (a)
64
+
65
+
66
+ specifying the subject matter and purpose of the inspection;
67
+
68
+
69
+ (b)
70
+
71
+
72
+ containing a statement that, pursuant to Article 16, a lack of cooperation allows
73
+ the Commission to take a decision on the basis of the facts that are available
74
+ to it;
75
+
76
+
77
+ (c)'
78
+ - 'By way of derogation from Article 10c, the Member States concerned may only give
79
+ transitional free allocation to installations in accordance with that Article
80
+ for investments carried out until 31 December 2024. Any allowances available to
81
+ the Member States concerned in accordance with Article 10c for the period from
82
+ 2021 to 2030 that are not used for such investments shall, in the proportion determined
83
+ by the respective Member State:
84
+
85
+
86
+ (a)
87
+
88
+
89
+ be added to the total quantity of allowances that the Member State concerned is
90
+ to auction pursuant to Article 10(2); or
91
+
92
+
93
+ (b)'
94
+ - '7.
95
+
96
+
97
+ Member States shall require subsidiary undertakings or branches not subject to
98
+ the provisions of paragraphs 4 and 5 of this Article to publish and make accessible
99
+ a report on income tax information where such subsidiary undertakings or branches
100
+ serve no other objective than to circumvent the reporting requirements set out
101
+ in this Chapter.
102
+
103
+
104
+ Article 48c
105
+
106
+
107
+ Content of the report on income tax information
108
+
109
+
110
+ 1.
111
+
112
+
113
+ The report on income tax information required under Article 48b shall include
114
+ information relating to all the activities of the standalone undertaking or ultimate
115
+ parent undertaking, including those of all affiliated undertakings consolidated
116
+ in the financial statements in respect of the relevant financial year.
117
+
118
+
119
+ 2.'
120
+ pipeline_tag: sentence-similarity
121
+ library_name: sentence-transformers
122
+ metrics:
123
+ - cosine_accuracy@1
124
+ - cosine_accuracy@3
125
+ - cosine_accuracy@5
126
+ - cosine_accuracy@10
127
+ - cosine_precision@1
128
+ - cosine_precision@3
129
+ - cosine_precision@5
130
+ - cosine_precision@10
131
+ - cosine_recall@1
132
+ - cosine_recall@3
133
+ - cosine_recall@5
134
+ - cosine_recall@10
135
+ - cosine_ndcg@10
136
+ - cosine_mrr@10
137
+ - cosine_map@100
138
+ model-index:
139
+ - name: SentenceTransformer based on nreimers/albert-small-v2
140
+ results:
141
+ - task:
142
+ type: information-retrieval
143
+ name: Information Retrieval
144
+ dataset:
145
+ name: Unknown
146
+ type: unknown
147
+ metrics:
148
+ - type: cosine_accuracy@1
149
+ value: 0.7
150
+ name: Cosine Accuracy@1
151
+ - type: cosine_accuracy@3
152
+ value: 0.7
153
+ name: Cosine Accuracy@3
154
+ - type: cosine_accuracy@5
155
+ value: 0.8
156
+ name: Cosine Accuracy@5
157
+ - type: cosine_accuracy@10
158
+ value: 0.9
159
+ name: Cosine Accuracy@10
160
+ - type: cosine_precision@1
161
+ value: 0.7
162
+ name: Cosine Precision@1
163
+ - type: cosine_precision@3
164
+ value: 0.23333333333333334
165
+ name: Cosine Precision@3
166
+ - type: cosine_precision@5
167
+ value: 0.16
168
+ name: Cosine Precision@5
169
+ - type: cosine_precision@10
170
+ value: 0.09
171
+ name: Cosine Precision@10
172
+ - type: cosine_recall@1
173
+ value: 0.7
174
+ name: Cosine Recall@1
175
+ - type: cosine_recall@3
176
+ value: 0.7
177
+ name: Cosine Recall@3
178
+ - type: cosine_recall@5
179
+ value: 0.8
180
+ name: Cosine Recall@5
181
+ - type: cosine_recall@10
182
+ value: 0.9
183
+ name: Cosine Recall@10
184
+ - type: cosine_ndcg@10
185
+ value: 0.7675917633552429
186
+ name: Cosine Ndcg@10
187
+ - type: cosine_mrr@10
188
+ value: 0.7300000000000001
189
+ name: Cosine Mrr@10
190
+ - type: cosine_map@100
191
+ value: 0.739090909090909
192
+ name: Cosine Map@100
193
+ ---
194
+
195
+ # SentenceTransformer based on nreimers/albert-small-v2
196
+
197
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nreimers/albert-small-v2](https://huggingface.co/nreimers/albert-small-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
198
+
199
+ ## Model Details
200
+
201
+ ### Model Description
202
+ - **Model Type:** Sentence Transformer
203
+ - **Base model:** [nreimers/albert-small-v2](https://huggingface.co/nreimers/albert-small-v2) <!-- at revision 18045fa83de53fd7d4548fdc2473862914cbc7d5 -->
204
+ - **Maximum Sequence Length:** 512 tokens
205
+ - **Output Dimensionality:** 768 dimensions
206
+ - **Similarity Function:** Cosine Similarity
207
+ <!-- - **Training Dataset:** Unknown -->
208
+ <!-- - **Language:** Unknown -->
209
+ <!-- - **License:** Unknown -->
210
+
211
+ ### Model Sources
212
+
213
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
214
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
215
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
216
+
217
+ ### Full Model Architecture
218
+
219
+ ```
220
+ SentenceTransformer(
221
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: AlbertModel
222
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
223
+ )
224
+ ```
225
+
226
+ ## Usage
227
+
228
+ ### Direct Usage (Sentence Transformers)
229
+
230
+ First install the Sentence Transformers library:
231
+
232
+ ```bash
233
+ pip install -U sentence-transformers
234
+ ```
235
+
236
+ Then you can load this model and run inference.
237
+ ```python
238
+ from sentence_transformers import SentenceTransformer
239
+
240
+ # Download from the 🤗 Hub
241
+ model = SentenceTransformer("sentence_transformers_model_id")
242
+ # Run inference
243
+ sentences = [
244
+ 'What should the report on income tax information include as per Article 48c?',
245
+ '7.\n\nMember States shall require subsidiary undertakings or branches not subject to the provisions of paragraphs 4 and 5 of this Article to publish and make accessible a report on income tax information where such subsidiary undertakings or branches serve no other objective than to circumvent the reporting requirements set out in this Chapter.\n\nArticle 48c\n\nContent of the report on income tax information\n\n1.\n\nThe report on income tax information required under Article 48b shall include information relating to all the activities of the standalone undertaking or ultimate parent undertaking, including those of all affiliated undertakings consolidated in the financial statements in respect of the relevant financial year.\n\n2.',
246
+ '(d)\n\nseal any business premises and books or records for the period of time of, and to the extent necessary for, the inspection.\n\n3.\n\nThe undertaking or association of undertakings shall submit to inspections ordered by decision of the Commission. The officials and other accompanying persons authorised by the Commission to conduct an inspection shall exercise their powers upon production of a Commission decision:\n\n(a)\n\nspecifying the subject matter and purpose of the inspection;\n\n(b)\n\ncontaining a statement that, pursuant to Article 16, a lack of cooperation allows the Commission to take a decision on the basis of the facts that are available to it;\n\n(c)',
247
+ ]
248
+ embeddings = model.encode(sentences)
249
+ print(embeddings.shape)
250
+ # [3, 768]
251
+
252
+ # Get the similarity scores for the embeddings
253
+ similarities = model.similarity(embeddings, embeddings)
254
+ print(similarities.shape)
255
+ # [3, 3]
256
+ ```
257
+
258
+ <!--
259
+ ### Direct Usage (Transformers)
260
+
261
+ <details><summary>Click to see the direct usage in Transformers</summary>
262
+
263
+ </details>
264
+ -->
265
+
266
+ <!--
267
+ ### Downstream Usage (Sentence Transformers)
268
+
269
+ You can finetune this model on your own dataset.
270
+
271
+ <details><summary>Click to expand</summary>
272
+
273
+ </details>
274
+ -->
275
+
276
+ <!--
277
+ ### Out-of-Scope Use
278
+
279
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
280
+ -->
281
+
282
+ ## Evaluation
283
+
284
+ ### Metrics
285
+
286
+ #### Information Retrieval
287
+
288
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
289
+
290
+ | Metric | Value |
291
+ |:--------------------|:-----------|
292
+ | cosine_accuracy@1 | 0.7 |
293
+ | cosine_accuracy@3 | 0.7 |
294
+ | cosine_accuracy@5 | 0.8 |
295
+ | cosine_accuracy@10 | 0.9 |
296
+ | cosine_precision@1 | 0.7 |
297
+ | cosine_precision@3 | 0.2333 |
298
+ | cosine_precision@5 | 0.16 |
299
+ | cosine_precision@10 | 0.09 |
300
+ | cosine_recall@1 | 0.7 |
301
+ | cosine_recall@3 | 0.7 |
302
+ | cosine_recall@5 | 0.8 |
303
+ | cosine_recall@10 | 0.9 |
304
+ | **cosine_ndcg@10** | **0.7676** |
305
+ | cosine_mrr@10 | 0.73 |
306
+ | cosine_map@100 | 0.7391 |
307
+
308
+ <!--
309
+ ## Bias, Risks and Limitations
310
+
311
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
312
+ -->
313
+
314
+ <!--
315
+ ### Recommendations
316
+
317
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
318
+ -->
319
+
320
+ ## Training Details
321
+
322
+ ### Training Dataset
323
+
324
+ #### Unnamed Dataset
325
+
326
+ * Size: 10 training samples
327
+ * Columns: <code>query_text</code> and <code>doc_text</code>
328
+ * Approximate statistics based on the first 10 samples:
329
+ | | query_text | doc_text |
330
+ |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
331
+ | type | string | string |
332
+ | details | <ul><li>min: 17 tokens</li><li>mean: 38.6 tokens</li><li>max: 89 tokens</li></ul> | <ul><li>min: 113 tokens</li><li>mean: 237.7 tokens</li><li>max: 512 tokens</li></ul> |
333
+ * Samples:
334
+ | query_text | doc_text |
335
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
336
+ | <code>What are the requirements for Member States regarding the establishment of AI regulatory sandboxes, including the timeline for operational readiness and the possibility of joint establishment with other Member States?</code> | <code>1. Member States shall ensure that their competent authorities establish at least one AI regulatory sandbox at national level, which shall be operational by 2 August 2026. That sandbox may also be established jointly with the competent authorities of other Member States. The Commission may provide technical support, advice and tools for the establishment and operation of AI regulatory sandboxes.<br><br>The obligation under the first subparagraph may also be fulfilled by participating in an existing sandbox in so far as that participation provides an equivalent level of national coverage for the participating Member States.</code> |
337
+ | <code>Member States must provide updates on their national energy and climate strategies, detailing the anticipated energy savings from 2021 to 2030. They are also obligated to report on the necessary energy savings and the policies intended to achieve these goals. If assessments reveal that a Member State's measures are inadequate to meet energy savings targets, the Commission may issue recommendations for improvement. Additionally, any shortfall in energy savings must be addressed in subsequent obligation periods.</code> | <code>9. Member States shall apply and calculate the effect of the options chosen under paragraph 8 for the period referred to in paragraph 1, first subparagraph, points (a) and (b)(i), separately:<br><br>(a) for the calculation of the amount of energy savings required for the obligation period referred to in paragraph 1, first subparagraph, point (a), Member States may make use of the options listed in paragraph 8, points (a) to (d). All the options chosen under paragraph 8 taken together shall amount to no more than 25 % of the amount of energy savings referred to in paragraph 1, first subparagraph, point (a); (b) for the calculation of the amount of energy savings required for the obligation period referred to in paragraph 1, first subparagraph, point (b)(i), Member States may make use of the options listed in paragraph 8, points (b) to (g), provided that the individual actions referred to in paragraph 8, point (d), continue to have a verifiable and measurable impact after 31 December 2020. All...</code> |
338
+ | <code>What is the functional definition of a remote biometric identification system, and how does it operate in terms of identifying individuals without their active participation?</code> | <code>(17) The notion of ‘remote biometric identification system’ referred to in this Regulation should be defined functionally, as an AI system intended for the identification of natural persons without their active involvement, typically at a distance, through the comparison of a person’s biometric data with the biometric data contained in a reference database, irrespectively of the particular technology, processes or types of biometric data used. Such remote biometric identification systems are typically used to perceive multiple persons or their behaviour simultaneously in order to facilitate significantly the identification of natural persons without their active involvement. This excludes AI systems intended to be used for biometric</code> |
339
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
340
+ ```json
341
+ {
342
+ "loss": "MultipleNegativesRankingLoss",
343
+ "matryoshka_dims": [
344
+ 768,
345
+ 512,
346
+ 256,
347
+ 128,
348
+ 64
349
+ ],
350
+ "matryoshka_weights": [
351
+ 1,
352
+ 1,
353
+ 1,
354
+ 1,
355
+ 1
356
+ ],
357
+ "n_dims_per_step": -1
358
+ }
359
+ ```
360
+
361
+ ### Training Hyperparameters
362
+ #### Non-Default Hyperparameters
363
+
364
+ - `eval_strategy`: steps
365
+ - `per_device_train_batch_size`: 3
366
+ - `per_device_eval_batch_size`: 3
367
+ - `learning_rate`: 2e-05
368
+ - `num_train_epochs`: 1
369
+ - `warmup_ratio`: 0.1
370
+ - `fp16`: True
371
+ - `load_best_model_at_end`: True
372
+
373
+ #### All Hyperparameters
374
+ <details><summary>Click to expand</summary>
375
+
376
+ - `overwrite_output_dir`: False
377
+ - `do_predict`: False
378
+ - `eval_strategy`: steps
379
+ - `prediction_loss_only`: True
380
+ - `per_device_train_batch_size`: 3
381
+ - `per_device_eval_batch_size`: 3
382
+ - `per_gpu_train_batch_size`: None
383
+ - `per_gpu_eval_batch_size`: None
384
+ - `gradient_accumulation_steps`: 1
385
+ - `eval_accumulation_steps`: None
386
+ - `torch_empty_cache_steps`: None
387
+ - `learning_rate`: 2e-05
388
+ - `weight_decay`: 0.0
389
+ - `adam_beta1`: 0.9
390
+ - `adam_beta2`: 0.999
391
+ - `adam_epsilon`: 1e-08
392
+ - `max_grad_norm`: 1.0
393
+ - `num_train_epochs`: 1
394
+ - `max_steps`: -1
395
+ - `lr_scheduler_type`: linear
396
+ - `lr_scheduler_kwargs`: {}
397
+ - `warmup_ratio`: 0.1
398
+ - `warmup_steps`: 0
399
+ - `log_level`: passive
400
+ - `log_level_replica`: warning
401
+ - `log_on_each_node`: True
402
+ - `logging_nan_inf_filter`: True
403
+ - `save_safetensors`: True
404
+ - `save_on_each_node`: False
405
+ - `save_only_model`: False
406
+ - `restore_callback_states_from_checkpoint`: False
407
+ - `no_cuda`: False
408
+ - `use_cpu`: False
409
+ - `use_mps_device`: False
410
+ - `seed`: 42
411
+ - `data_seed`: None
412
+ - `jit_mode_eval`: False
413
+ - `use_ipex`: False
414
+ - `bf16`: False
415
+ - `fp16`: True
416
+ - `fp16_opt_level`: O1
417
+ - `half_precision_backend`: auto
418
+ - `bf16_full_eval`: False
419
+ - `fp16_full_eval`: False
420
+ - `tf32`: None
421
+ - `local_rank`: 0
422
+ - `ddp_backend`: None
423
+ - `tpu_num_cores`: None
424
+ - `tpu_metrics_debug`: False
425
+ - `debug`: []
426
+ - `dataloader_drop_last`: False
427
+ - `dataloader_num_workers`: 0
428
+ - `dataloader_prefetch_factor`: None
429
+ - `past_index`: -1
430
+ - `disable_tqdm`: False
431
+ - `remove_unused_columns`: True
432
+ - `label_names`: None
433
+ - `load_best_model_at_end`: True
434
+ - `ignore_data_skip`: False
435
+ - `fsdp`: []
436
+ - `fsdp_min_num_params`: 0
437
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
438
+ - `fsdp_transformer_layer_cls_to_wrap`: None
439
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
440
+ - `deepspeed`: None
441
+ - `label_smoothing_factor`: 0.0
442
+ - `optim`: adamw_torch
443
+ - `optim_args`: None
444
+ - `adafactor`: False
445
+ - `group_by_length`: False
446
+ - `length_column_name`: length
447
+ - `ddp_find_unused_parameters`: None
448
+ - `ddp_bucket_cap_mb`: None
449
+ - `ddp_broadcast_buffers`: False
450
+ - `dataloader_pin_memory`: True
451
+ - `dataloader_persistent_workers`: False
452
+ - `skip_memory_metrics`: True
453
+ - `use_legacy_prediction_loop`: False
454
+ - `push_to_hub`: False
455
+ - `resume_from_checkpoint`: None
456
+ - `hub_model_id`: None
457
+ - `hub_strategy`: every_save
458
+ - `hub_private_repo`: None
459
+ - `hub_always_push`: False
460
+ - `gradient_checkpointing`: False
461
+ - `gradient_checkpointing_kwargs`: None
462
+ - `include_inputs_for_metrics`: False
463
+ - `include_for_metrics`: []
464
+ - `eval_do_concat_batches`: True
465
+ - `fp16_backend`: auto
466
+ - `push_to_hub_model_id`: None
467
+ - `push_to_hub_organization`: None
468
+ - `mp_parameters`:
469
+ - `auto_find_batch_size`: False
470
+ - `full_determinism`: False
471
+ - `torchdynamo`: None
472
+ - `ray_scope`: last
473
+ - `ddp_timeout`: 1800
474
+ - `torch_compile`: False
475
+ - `torch_compile_backend`: None
476
+ - `torch_compile_mode`: None
477
+ - `dispatch_batches`: None
478
+ - `split_batches`: None
479
+ - `include_tokens_per_second`: False
480
+ - `include_num_input_tokens_seen`: False
481
+ - `neftune_noise_alpha`: None
482
+ - `optim_target_modules`: None
483
+ - `batch_eval_metrics`: False
484
+ - `eval_on_start`: False
485
+ - `use_liger_kernel`: False
486
+ - `eval_use_gather_object`: False
487
+ - `average_tokens_across_devices`: False
488
+ - `prompts`: None
489
+ - `batch_sampler`: batch_sampler
490
+ - `multi_dataset_batch_sampler`: proportional
491
+
492
+ </details>
493
+
494
+ ### Training Logs
495
+ | Epoch | Step | cosine_ndcg@10 |
496
+ |:-----:|:----:|:--------------:|
497
+ | -1 | -1 | 0.7676 |
498
+
499
+
500
+ ### Framework Versions
501
+ - Python: 3.11.10
502
+ - Sentence Transformers: 4.0.2
503
+ - Transformers: 4.49.0
504
+ - PyTorch: 2.6.0+cu124
505
+ - Accelerate: 0.26.0
506
+ - Datasets: 3.1.0
507
+ - Tokenizers: 0.21.2
508
+
509
+ ## Citation
510
+
511
+ ### BibTeX
512
+
513
+ #### Sentence Transformers
514
+ ```bibtex
515
+ @inproceedings{reimers-2019-sentence-bert,
516
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
517
+ author = "Reimers, Nils and Gurevych, Iryna",
518
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
519
+ month = "11",
520
+ year = "2019",
521
+ publisher = "Association for Computational Linguistics",
522
+ url = "https://arxiv.org/abs/1908.10084",
523
+ }
524
+ ```
525
+
526
+ #### MatryoshkaLoss
527
+ ```bibtex
528
+ @misc{kusupati2024matryoshka,
529
+ title={Matryoshka Representation Learning},
530
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
531
+ year={2024},
532
+ eprint={2205.13147},
533
+ archivePrefix={arXiv},
534
+ primaryClass={cs.LG}
535
+ }
536
+ ```
537
+
538
+ #### MultipleNegativesRankingLoss
539
+ ```bibtex
540
+ @misc{henderson2017efficient,
541
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
542
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
543
+ year={2017},
544
+ eprint={1705.00652},
545
+ archivePrefix={arXiv},
546
+ primaryClass={cs.CL}
547
+ }
548
+ ```
549
+
550
+ <!--
551
+ ## Glossary
552
+
553
+ *Clearly define terms in order to be accessible across audiences.*
554
+ -->
555
+
556
+ <!--
557
+ ## Model Card Authors
558
+
559
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
560
+ -->
561
+
562
+ <!--
563
+ ## Model Card Contact
564
+
565
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
566
+ -->
checkpoint-4/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-4/README.md ADDED
@@ -0,0 +1,566 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:10
8
+ - loss:MatryoshkaLoss
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: nreimers/albert-small-v2
11
+ widget:
12
+ - source_sentence: What processes are used to separate the raw liquid mix from natural
13
+ gas in a gas recycling plant?
14
+ sentences:
15
+ - '2016 ►M43 (*1) ◄ 21 September 2017 ►M43 (*2) ◄ [▼M28](./../../../legal-content/EN/AUTO/?uri=celex:32014R0895
16
+ "32014R0895: INSERTED") 23. Formaldehyde, oligomeric reaction products with aniline
17
+ (technical MDA) EC No: 500-036-1 CAS No: 25214-70-4 Carcinogenic (category 1B)
18
+ 22 February 2016 ►M43 (*1) ◄ 22 August 2017 ►M43 (*2) ◄ — 24. Arsenic acid EC
19
+ No: 231-901-9 CAS No: 7778-39-4 Carcinogenic (category 1A) 22 February 2016 22
20
+ August 2017 — 25. Bis(2-methoxyethyl) ether (diglyme) EC No: 203-924-4 CAS No:
21
+ 111-96-6 Toxic for reproduction (category 1B) 22 February 2016 ►M43 (*1) ◄ 22
22
+ August 2017 ►M43 (*2) ◄ — 26. 1,2-dichloroethane (EDC) EC No: 203-458-1 CAS No:
23
+ 107-06-2 Carcinogenic (category 1B) 22 May 2016 22 November 2017 — 27.'
24
+ - '1. Member States shall ensure that their competent authorities establish at least
25
+ one AI regulatory sandbox at national level, which shall be operational by 2 August
26
+ 2026. That sandbox may also be established jointly with the competent authorities
27
+ of other Member States. The Commission may provide technical support, advice and
28
+ tools for the establishment and operation of AI regulatory sandboxes.
29
+
30
+
31
+ The obligation under the first subparagraph may also be fulfilled by participating
32
+ in an existing sandbox in so far as that participation provides an equivalent
33
+ level of national coverage for the participating Member States.'
34
+ - and that boils in a range of approximately 149 °C to 205 °C.) 649-345-00-4 232-489-3
35
+ 8052-41-3 P Natural gas condensates (petroleum); Low boiling point naphtha — unspecified
36
+ (A complex combination of hydrocarbons separated as a liquid from natural gas
37
+ in a surface separator by retrograde condensation. It consists mainly of hydrocarbons
38
+ having carbon numbers predominantly in the range of C2 to C20. It is a liquid
39
+ at atmospheric temperature and pressure.) 649-346-00-X 265-047-3 64741-47-5 P
40
+ Natural gas (petroleum), raw liquid mix; Low boiling point naphtha — unspecified
41
+ (A complex combination of hydrocarbons separated as a liquid from natural gas
42
+ in a gas recycling plant by processes such as refrigeration or absorption. It
43
+ consists mainly of
44
+ - source_sentence: What should the report on income tax information include as per
45
+ Article 48c?
46
+ sentences:
47
+ - '(d)
48
+
49
+
50
+ seal any business premises and books or records for the period of time of, and
51
+ to the extent necessary for, the inspection.
52
+
53
+
54
+ 3.
55
+
56
+
57
+ The undertaking or association of undertakings shall submit to inspections ordered
58
+ by decision of the Commission. The officials and other accompanying persons authorised
59
+ by the Commission to conduct an inspection shall exercise their powers upon production
60
+ of a Commission decision:
61
+
62
+
63
+ (a)
64
+
65
+
66
+ specifying the subject matter and purpose of the inspection;
67
+
68
+
69
+ (b)
70
+
71
+
72
+ containing a statement that, pursuant to Article 16, a lack of cooperation allows
73
+ the Commission to take a decision on the basis of the facts that are available
74
+ to it;
75
+
76
+
77
+ (c)'
78
+ - 'By way of derogation from Article 10c, the Member States concerned may only give
79
+ transitional free allocation to installations in accordance with that Article
80
+ for investments carried out until 31 December 2024. Any allowances available to
81
+ the Member States concerned in accordance with Article 10c for the period from
82
+ 2021 to 2030 that are not used for such investments shall, in the proportion determined
83
+ by the respective Member State:
84
+
85
+
86
+ (a)
87
+
88
+
89
+ be added to the total quantity of allowances that the Member State concerned is
90
+ to auction pursuant to Article 10(2); or
91
+
92
+
93
+ (b)'
94
+ - '7.
95
+
96
+
97
+ Member States shall require subsidiary undertakings or branches not subject to
98
+ the provisions of paragraphs 4 and 5 of this Article to publish and make accessible
99
+ a report on income tax information where such subsidiary undertakings or branches
100
+ serve no other objective than to circumvent the reporting requirements set out
101
+ in this Chapter.
102
+
103
+
104
+ Article 48c
105
+
106
+
107
+ Content of the report on income tax information
108
+
109
+
110
+ 1.
111
+
112
+
113
+ The report on income tax information required under Article 48b shall include
114
+ information relating to all the activities of the standalone undertaking or ultimate
115
+ parent undertaking, including those of all affiliated undertakings consolidated
116
+ in the financial statements in respect of the relevant financial year.
117
+
118
+
119
+ 2.'
120
+ pipeline_tag: sentence-similarity
121
+ library_name: sentence-transformers
122
+ metrics:
123
+ - cosine_accuracy@1
124
+ - cosine_accuracy@3
125
+ - cosine_accuracy@5
126
+ - cosine_accuracy@10
127
+ - cosine_precision@1
128
+ - cosine_precision@3
129
+ - cosine_precision@5
130
+ - cosine_precision@10
131
+ - cosine_recall@1
132
+ - cosine_recall@3
133
+ - cosine_recall@5
134
+ - cosine_recall@10
135
+ - cosine_ndcg@10
136
+ - cosine_mrr@10
137
+ - cosine_map@100
138
+ model-index:
139
+ - name: SentenceTransformer based on nreimers/albert-small-v2
140
+ results:
141
+ - task:
142
+ type: information-retrieval
143
+ name: Information Retrieval
144
+ dataset:
145
+ name: Unknown
146
+ type: unknown
147
+ metrics:
148
+ - type: cosine_accuracy@1
149
+ value: 0.7
150
+ name: Cosine Accuracy@1
151
+ - type: cosine_accuracy@3
152
+ value: 0.7
153
+ name: Cosine Accuracy@3
154
+ - type: cosine_accuracy@5
155
+ value: 0.8
156
+ name: Cosine Accuracy@5
157
+ - type: cosine_accuracy@10
158
+ value: 0.9
159
+ name: Cosine Accuracy@10
160
+ - type: cosine_precision@1
161
+ value: 0.7
162
+ name: Cosine Precision@1
163
+ - type: cosine_precision@3
164
+ value: 0.23333333333333334
165
+ name: Cosine Precision@3
166
+ - type: cosine_precision@5
167
+ value: 0.16
168
+ name: Cosine Precision@5
169
+ - type: cosine_precision@10
170
+ value: 0.09
171
+ name: Cosine Precision@10
172
+ - type: cosine_recall@1
173
+ value: 0.7
174
+ name: Cosine Recall@1
175
+ - type: cosine_recall@3
176
+ value: 0.7
177
+ name: Cosine Recall@3
178
+ - type: cosine_recall@5
179
+ value: 0.8
180
+ name: Cosine Recall@5
181
+ - type: cosine_recall@10
182
+ value: 0.9
183
+ name: Cosine Recall@10
184
+ - type: cosine_ndcg@10
185
+ value: 0.7675917633552429
186
+ name: Cosine Ndcg@10
187
+ - type: cosine_mrr@10
188
+ value: 0.7300000000000001
189
+ name: Cosine Mrr@10
190
+ - type: cosine_map@100
191
+ value: 0.739090909090909
192
+ name: Cosine Map@100
193
+ ---
194
+
195
+ # SentenceTransformer based on nreimers/albert-small-v2
196
+
197
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nreimers/albert-small-v2](https://huggingface.co/nreimers/albert-small-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
198
+
199
+ ## Model Details
200
+
201
+ ### Model Description
202
+ - **Model Type:** Sentence Transformer
203
+ - **Base model:** [nreimers/albert-small-v2](https://huggingface.co/nreimers/albert-small-v2) <!-- at revision 18045fa83de53fd7d4548fdc2473862914cbc7d5 -->
204
+ - **Maximum Sequence Length:** 512 tokens
205
+ - **Output Dimensionality:** 768 dimensions
206
+ - **Similarity Function:** Cosine Similarity
207
+ <!-- - **Training Dataset:** Unknown -->
208
+ <!-- - **Language:** Unknown -->
209
+ <!-- - **License:** Unknown -->
210
+
211
+ ### Model Sources
212
+
213
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
214
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
215
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
216
+
217
+ ### Full Model Architecture
218
+
219
+ ```
220
+ SentenceTransformer(
221
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: AlbertModel
222
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
223
+ )
224
+ ```
225
+
226
+ ## Usage
227
+
228
+ ### Direct Usage (Sentence Transformers)
229
+
230
+ First install the Sentence Transformers library:
231
+
232
+ ```bash
233
+ pip install -U sentence-transformers
234
+ ```
235
+
236
+ Then you can load this model and run inference.
237
+ ```python
238
+ from sentence_transformers import SentenceTransformer
239
+
240
+ # Download from the 🤗 Hub
241
+ model = SentenceTransformer("sentence_transformers_model_id")
242
+ # Run inference
243
+ sentences = [
244
+ 'What should the report on income tax information include as per Article 48c?',
245
+ '7.\n\nMember States shall require subsidiary undertakings or branches not subject to the provisions of paragraphs 4 and 5 of this Article to publish and make accessible a report on income tax information where such subsidiary undertakings or branches serve no other objective than to circumvent the reporting requirements set out in this Chapter.\n\nArticle 48c\n\nContent of the report on income tax information\n\n1.\n\nThe report on income tax information required under Article 48b shall include information relating to all the activities of the standalone undertaking or ultimate parent undertaking, including those of all affiliated undertakings consolidated in the financial statements in respect of the relevant financial year.\n\n2.',
246
+ '(d)\n\nseal any business premises and books or records for the period of time of, and to the extent necessary for, the inspection.\n\n3.\n\nThe undertaking or association of undertakings shall submit to inspections ordered by decision of the Commission. The officials and other accompanying persons authorised by the Commission to conduct an inspection shall exercise their powers upon production of a Commission decision:\n\n(a)\n\nspecifying the subject matter and purpose of the inspection;\n\n(b)\n\ncontaining a statement that, pursuant to Article 16, a lack of cooperation allows the Commission to take a decision on the basis of the facts that are available to it;\n\n(c)',
247
+ ]
248
+ embeddings = model.encode(sentences)
249
+ print(embeddings.shape)
250
+ # [3, 768]
251
+
252
+ # Get the similarity scores for the embeddings
253
+ similarities = model.similarity(embeddings, embeddings)
254
+ print(similarities.shape)
255
+ # [3, 3]
256
+ ```
257
+
258
+ <!--
259
+ ### Direct Usage (Transformers)
260
+
261
+ <details><summary>Click to see the direct usage in Transformers</summary>
262
+
263
+ </details>
264
+ -->
265
+
266
+ <!--
267
+ ### Downstream Usage (Sentence Transformers)
268
+
269
+ You can finetune this model on your own dataset.
270
+
271
+ <details><summary>Click to expand</summary>
272
+
273
+ </details>
274
+ -->
275
+
276
+ <!--
277
+ ### Out-of-Scope Use
278
+
279
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
280
+ -->
281
+
282
+ ## Evaluation
283
+
284
+ ### Metrics
285
+
286
+ #### Information Retrieval
287
+
288
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
289
+
290
+ | Metric | Value |
291
+ |:--------------------|:-----------|
292
+ | cosine_accuracy@1 | 0.7 |
293
+ | cosine_accuracy@3 | 0.7 |
294
+ | cosine_accuracy@5 | 0.8 |
295
+ | cosine_accuracy@10 | 0.9 |
296
+ | cosine_precision@1 | 0.7 |
297
+ | cosine_precision@3 | 0.2333 |
298
+ | cosine_precision@5 | 0.16 |
299
+ | cosine_precision@10 | 0.09 |
300
+ | cosine_recall@1 | 0.7 |
301
+ | cosine_recall@3 | 0.7 |
302
+ | cosine_recall@5 | 0.8 |
303
+ | cosine_recall@10 | 0.9 |
304
+ | **cosine_ndcg@10** | **0.7676** |
305
+ | cosine_mrr@10 | 0.73 |
306
+ | cosine_map@100 | 0.7391 |
307
+
308
+ <!--
309
+ ## Bias, Risks and Limitations
310
+
311
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
312
+ -->
313
+
314
+ <!--
315
+ ### Recommendations
316
+
317
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
318
+ -->
319
+
320
+ ## Training Details
321
+
322
+ ### Training Dataset
323
+
324
+ #### Unnamed Dataset
325
+
326
+ * Size: 10 training samples
327
+ * Columns: <code>query_text</code> and <code>doc_text</code>
328
+ * Approximate statistics based on the first 10 samples:
329
+ | | query_text | doc_text |
330
+ |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
331
+ | type | string | string |
332
+ | details | <ul><li>min: 17 tokens</li><li>mean: 38.6 tokens</li><li>max: 89 tokens</li></ul> | <ul><li>min: 113 tokens</li><li>mean: 237.7 tokens</li><li>max: 512 tokens</li></ul> |
333
+ * Samples:
334
+ | query_text | doc_text |
335
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
336
+ | <code>What are the requirements for Member States regarding the establishment of AI regulatory sandboxes, including the timeline for operational readiness and the possibility of joint establishment with other Member States?</code> | <code>1. Member States shall ensure that their competent authorities establish at least one AI regulatory sandbox at national level, which shall be operational by 2 August 2026. That sandbox may also be established jointly with the competent authorities of other Member States. The Commission may provide technical support, advice and tools for the establishment and operation of AI regulatory sandboxes.<br><br>The obligation under the first subparagraph may also be fulfilled by participating in an existing sandbox in so far as that participation provides an equivalent level of national coverage for the participating Member States.</code> |
337
+ | <code>Member States must provide updates on their national energy and climate strategies, detailing the anticipated energy savings from 2021 to 2030. They are also obligated to report on the necessary energy savings and the policies intended to achieve these goals. If assessments reveal that a Member State's measures are inadequate to meet energy savings targets, the Commission may issue recommendations for improvement. Additionally, any shortfall in energy savings must be addressed in subsequent obligation periods.</code> | <code>9. Member States shall apply and calculate the effect of the options chosen under paragraph 8 for the period referred to in paragraph 1, first subparagraph, points (a) and (b)(i), separately:<br><br>(a) for the calculation of the amount of energy savings required for the obligation period referred to in paragraph 1, first subparagraph, point (a), Member States may make use of the options listed in paragraph 8, points (a) to (d). All the options chosen under paragraph 8 taken together shall amount to no more than 25 % of the amount of energy savings referred to in paragraph 1, first subparagraph, point (a); (b) for the calculation of the amount of energy savings required for the obligation period referred to in paragraph 1, first subparagraph, point (b)(i), Member States may make use of the options listed in paragraph 8, points (b) to (g), provided that the individual actions referred to in paragraph 8, point (d), continue to have a verifiable and measurable impact after 31 December 2020. All...</code> |
338
+ | <code>What is the functional definition of a remote biometric identification system, and how does it operate in terms of identifying individuals without their active participation?</code> | <code>(17) The notion of ‘remote biometric identification system’ referred to in this Regulation should be defined functionally, as an AI system intended for the identification of natural persons without their active involvement, typically at a distance, through the comparison of a person’s biometric data with the biometric data contained in a reference database, irrespectively of the particular technology, processes or types of biometric data used. Such remote biometric identification systems are typically used to perceive multiple persons or their behaviour simultaneously in order to facilitate significantly the identification of natural persons without their active involvement. This excludes AI systems intended to be used for biometric</code> |
339
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
340
+ ```json
341
+ {
342
+ "loss": "MultipleNegativesRankingLoss",
343
+ "matryoshka_dims": [
344
+ 768,
345
+ 512,
346
+ 256,
347
+ 128,
348
+ 64
349
+ ],
350
+ "matryoshka_weights": [
351
+ 1,
352
+ 1,
353
+ 1,
354
+ 1,
355
+ 1
356
+ ],
357
+ "n_dims_per_step": -1
358
+ }
359
+ ```
360
+
361
+ ### Training Hyperparameters
362
+ #### Non-Default Hyperparameters
363
+
364
+ - `eval_strategy`: steps
365
+ - `per_device_train_batch_size`: 3
366
+ - `per_device_eval_batch_size`: 3
367
+ - `learning_rate`: 2e-05
368
+ - `num_train_epochs`: 1
369
+ - `warmup_ratio`: 0.1
370
+ - `fp16`: True
371
+ - `load_best_model_at_end`: True
372
+
373
+ #### All Hyperparameters
374
+ <details><summary>Click to expand</summary>
375
+
376
+ - `overwrite_output_dir`: False
377
+ - `do_predict`: False
378
+ - `eval_strategy`: steps
379
+ - `prediction_loss_only`: True
380
+ - `per_device_train_batch_size`: 3
381
+ - `per_device_eval_batch_size`: 3
382
+ - `per_gpu_train_batch_size`: None
383
+ - `per_gpu_eval_batch_size`: None
384
+ - `gradient_accumulation_steps`: 1
385
+ - `eval_accumulation_steps`: None
386
+ - `torch_empty_cache_steps`: None
387
+ - `learning_rate`: 2e-05
388
+ - `weight_decay`: 0.0
389
+ - `adam_beta1`: 0.9
390
+ - `adam_beta2`: 0.999
391
+ - `adam_epsilon`: 1e-08
392
+ - `max_grad_norm`: 1.0
393
+ - `num_train_epochs`: 1
394
+ - `max_steps`: -1
395
+ - `lr_scheduler_type`: linear
396
+ - `lr_scheduler_kwargs`: {}
397
+ - `warmup_ratio`: 0.1
398
+ - `warmup_steps`: 0
399
+ - `log_level`: passive
400
+ - `log_level_replica`: warning
401
+ - `log_on_each_node`: True
402
+ - `logging_nan_inf_filter`: True
403
+ - `save_safetensors`: True
404
+ - `save_on_each_node`: False
405
+ - `save_only_model`: False
406
+ - `restore_callback_states_from_checkpoint`: False
407
+ - `no_cuda`: False
408
+ - `use_cpu`: False
409
+ - `use_mps_device`: False
410
+ - `seed`: 42
411
+ - `data_seed`: None
412
+ - `jit_mode_eval`: False
413
+ - `use_ipex`: False
414
+ - `bf16`: False
415
+ - `fp16`: True
416
+ - `fp16_opt_level`: O1
417
+ - `half_precision_backend`: auto
418
+ - `bf16_full_eval`: False
419
+ - `fp16_full_eval`: False
420
+ - `tf32`: None
421
+ - `local_rank`: 0
422
+ - `ddp_backend`: None
423
+ - `tpu_num_cores`: None
424
+ - `tpu_metrics_debug`: False
425
+ - `debug`: []
426
+ - `dataloader_drop_last`: False
427
+ - `dataloader_num_workers`: 0
428
+ - `dataloader_prefetch_factor`: None
429
+ - `past_index`: -1
430
+ - `disable_tqdm`: False
431
+ - `remove_unused_columns`: True
432
+ - `label_names`: None
433
+ - `load_best_model_at_end`: True
434
+ - `ignore_data_skip`: False
435
+ - `fsdp`: []
436
+ - `fsdp_min_num_params`: 0
437
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
438
+ - `fsdp_transformer_layer_cls_to_wrap`: None
439
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
440
+ - `deepspeed`: None
441
+ - `label_smoothing_factor`: 0.0
442
+ - `optim`: adamw_torch
443
+ - `optim_args`: None
444
+ - `adafactor`: False
445
+ - `group_by_length`: False
446
+ - `length_column_name`: length
447
+ - `ddp_find_unused_parameters`: None
448
+ - `ddp_bucket_cap_mb`: None
449
+ - `ddp_broadcast_buffers`: False
450
+ - `dataloader_pin_memory`: True
451
+ - `dataloader_persistent_workers`: False
452
+ - `skip_memory_metrics`: True
453
+ - `use_legacy_prediction_loop`: False
454
+ - `push_to_hub`: False
455
+ - `resume_from_checkpoint`: None
456
+ - `hub_model_id`: None
457
+ - `hub_strategy`: every_save
458
+ - `hub_private_repo`: None
459
+ - `hub_always_push`: False
460
+ - `gradient_checkpointing`: False
461
+ - `gradient_checkpointing_kwargs`: None
462
+ - `include_inputs_for_metrics`: False
463
+ - `include_for_metrics`: []
464
+ - `eval_do_concat_batches`: True
465
+ - `fp16_backend`: auto
466
+ - `push_to_hub_model_id`: None
467
+ - `push_to_hub_organization`: None
468
+ - `mp_parameters`:
469
+ - `auto_find_batch_size`: False
470
+ - `full_determinism`: False
471
+ - `torchdynamo`: None
472
+ - `ray_scope`: last
473
+ - `ddp_timeout`: 1800
474
+ - `torch_compile`: False
475
+ - `torch_compile_backend`: None
476
+ - `torch_compile_mode`: None
477
+ - `dispatch_batches`: None
478
+ - `split_batches`: None
479
+ - `include_tokens_per_second`: False
480
+ - `include_num_input_tokens_seen`: False
481
+ - `neftune_noise_alpha`: None
482
+ - `optim_target_modules`: None
483
+ - `batch_eval_metrics`: False
484
+ - `eval_on_start`: False
485
+ - `use_liger_kernel`: False
486
+ - `eval_use_gather_object`: False
487
+ - `average_tokens_across_devices`: False
488
+ - `prompts`: None
489
+ - `batch_sampler`: batch_sampler
490
+ - `multi_dataset_batch_sampler`: proportional
491
+
492
+ </details>
493
+
494
+ ### Training Logs
495
+ | Epoch | Step | cosine_ndcg@10 |
496
+ |:-----:|:----:|:--------------:|
497
+ | -1 | -1 | 0.7676 |
498
+
499
+
500
+ ### Framework Versions
501
+ - Python: 3.11.10
502
+ - Sentence Transformers: 4.0.2
503
+ - Transformers: 4.49.0
504
+ - PyTorch: 2.6.0+cu124
505
+ - Accelerate: 0.26.0
506
+ - Datasets: 3.1.0
507
+ - Tokenizers: 0.21.2
508
+
509
+ ## Citation
510
+
511
+ ### BibTeX
512
+
513
+ #### Sentence Transformers
514
+ ```bibtex
515
+ @inproceedings{reimers-2019-sentence-bert,
516
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
517
+ author = "Reimers, Nils and Gurevych, Iryna",
518
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
519
+ month = "11",
520
+ year = "2019",
521
+ publisher = "Association for Computational Linguistics",
522
+ url = "https://arxiv.org/abs/1908.10084",
523
+ }
524
+ ```
525
+
526
+ #### MatryoshkaLoss
527
+ ```bibtex
528
+ @misc{kusupati2024matryoshka,
529
+ title={Matryoshka Representation Learning},
530
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
531
+ year={2024},
532
+ eprint={2205.13147},
533
+ archivePrefix={arXiv},
534
+ primaryClass={cs.LG}
535
+ }
536
+ ```
537
+
538
+ #### MultipleNegativesRankingLoss
539
+ ```bibtex
540
+ @misc{henderson2017efficient,
541
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
542
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
543
+ year={2017},
544
+ eprint={1705.00652},
545
+ archivePrefix={arXiv},
546
+ primaryClass={cs.CL}
547
+ }
548
+ ```
549
+
550
+ <!--
551
+ ## Glossary
552
+
553
+ *Clearly define terms in order to be accessible across audiences.*
554
+ -->
555
+
556
+ <!--
557
+ ## Model Card Authors
558
+
559
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
560
+ -->
561
+
562
+ <!--
563
+ ## Model Card Contact
564
+
565
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
566
+ -->
checkpoint-4/config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nreimers/albert-small-v2",
3
+ "architectures": [
4
+ "AlbertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0,
7
+ "bos_token_id": 2,
8
+ "classifier_dropout_prob": 0.1,
9
+ "down_scale_factor": 1,
10
+ "embedding_size": 128,
11
+ "eos_token_id": 3,
12
+ "gap_size": 0,
13
+ "hidden_act": "gelu_new",
14
+ "hidden_dropout_prob": 0,
15
+ "hidden_size": 768,
16
+ "initializer_range": 0.02,
17
+ "inner_group_num": 1,
18
+ "intermediate_size": 3072,
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "albert",
22
+ "net_structure_type": 0,
23
+ "num_attention_heads": 12,
24
+ "num_hidden_groups": 1,
25
+ "num_hidden_layers": 6,
26
+ "num_memory_blocks": 0,
27
+ "pad_token_id": 0,
28
+ "position_embedding_type": "absolute",
29
+ "torch_dtype": "float32",
30
+ "transformers_version": "4.49.0",
31
+ "type_vocab_size": 2,
32
+ "vocab_size": 30000
33
+ }
checkpoint-4/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.0.2",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
checkpoint-4/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:833cf4e8398dec67ec4534b7f924da611f731a3a59315147db6ce28b75613da6
3
+ size 46737416
checkpoint-4/modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
checkpoint-4/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72b8ce6f792ab1afd17d0cd1654d372af1e551a698d704eafaaca45b4fb9a16d
3
+ size 88763673
checkpoint-4/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07d44d70fb91997955c555ff62810112be8c2be42e5d418d46a61ceb508a7893
3
+ size 14244
checkpoint-4/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:757f896f547bd0ccf42a7806610f2addb446f10ae4e7733830821d768cb67f0e
3
+ size 988
checkpoint-4/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32fd674a2f040b8480f1192e3fa4ec1131dbc43297e15a8144fda84f3eba5749
3
+ size 1064
checkpoint-4/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
checkpoint-4/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
checkpoint-4/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-4/tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<pad>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<unk>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_lower_case": true,
48
+ "eos_token": "[SEP]",
49
+ "extra_special_tokens": {},
50
+ "keep_accents": false,
51
+ "mask_token": "[MASK]",
52
+ "max_length": 100,
53
+ "model_max_length": 512,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "<pad>",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "remove_space": true,
59
+ "sep_token": "[SEP]",
60
+ "stride": 0,
61
+ "tokenizer_class": "AlbertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
checkpoint-4/trainer_state.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 4,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [],
11
+ "logging_steps": 100,
12
+ "max_steps": 4,
13
+ "num_input_tokens_seen": 0,
14
+ "num_train_epochs": 1,
15
+ "save_steps": 500,
16
+ "stateful_callbacks": {
17
+ "TrainerControl": {
18
+ "args": {
19
+ "should_epoch_stop": false,
20
+ "should_evaluate": false,
21
+ "should_log": false,
22
+ "should_save": true,
23
+ "should_training_stop": true
24
+ },
25
+ "attributes": {}
26
+ }
27
+ },
28
+ "total_flos": 0.0,
29
+ "train_batch_size": 3,
30
+ "trial_name": null,
31
+ "trial_params": null
32
+ }
checkpoint-4/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:865a0243ca9b6ca6cd945f78cc6b23c8879fda6915148df4603a5f70ab20a093
3
+ size 5624
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nreimers/albert-small-v2",
3
+ "architectures": [
4
+ "AlbertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0,
7
+ "bos_token_id": 2,
8
+ "classifier_dropout_prob": 0.1,
9
+ "down_scale_factor": 1,
10
+ "embedding_size": 128,
11
+ "eos_token_id": 3,
12
+ "gap_size": 0,
13
+ "hidden_act": "gelu_new",
14
+ "hidden_dropout_prob": 0,
15
+ "hidden_size": 768,
16
+ "initializer_range": 0.02,
17
+ "inner_group_num": 1,
18
+ "intermediate_size": 3072,
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "albert",
22
+ "net_structure_type": 0,
23
+ "num_attention_heads": 12,
24
+ "num_hidden_groups": 1,
25
+ "num_hidden_layers": 6,
26
+ "num_memory_blocks": 0,
27
+ "pad_token_id": 0,
28
+ "position_embedding_type": "absolute",
29
+ "torch_dtype": "float32",
30
+ "transformers_version": "4.49.0",
31
+ "type_vocab_size": 2,
32
+ "vocab_size": 30000
33
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.0.2",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:833cf4e8398dec67ec4534b7f924da611f731a3a59315147db6ce28b75613da6
3
+ size 46737416
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<pad>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<unk>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_lower_case": true,
48
+ "eos_token": "[SEP]",
49
+ "extra_special_tokens": {},
50
+ "keep_accents": false,
51
+ "mask_token": "[MASK]",
52
+ "max_length": 100,
53
+ "model_max_length": 512,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "<pad>",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "remove_space": true,
59
+ "sep_token": "[SEP]",
60
+ "stride": 0,
61
+ "tokenizer_class": "AlbertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }