Upload handler.py
Browse files- handler.py +39 -0
handler.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, List, Any
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from io import BytesIO
|
| 4 |
+
from transformers import AutoModelForSemanticSegmentation, AutoFeatureExtractor
|
| 5 |
+
import base64
|
| 6 |
+
import torch
|
| 7 |
+
from torch import nn
|
| 8 |
+
|
| 9 |
+
class EndpointHandler():
|
| 10 |
+
def __init__(self, path="."):
|
| 11 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 12 |
+
self.model = AutoModelForSemanticSegmentation.from_pretrained(path).to(self.device).eval()
|
| 13 |
+
self.feature_extractor = AutoFeatureExtractor.from_pretrained(path)
|
| 14 |
+
|
| 15 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 16 |
+
"""
|
| 17 |
+
data args:
|
| 18 |
+
images (:obj:`PIL.Image`)
|
| 19 |
+
candiates (:obj:`list`)
|
| 20 |
+
Return:
|
| 21 |
+
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82}
|
| 22 |
+
"""
|
| 23 |
+
inputs = data.pop("inputs", data)
|
| 24 |
+
|
| 25 |
+
# decode base64 image to PIL
|
| 26 |
+
image = Image.open(BytesIO(base64.b64decode(inputs['image'])))
|
| 27 |
+
|
| 28 |
+
# preprocess image
|
| 29 |
+
encoding = self.feature_extractor(images=image, return_tensors="pt")
|
| 30 |
+
pixel_values = encoding["pixel_values"].to(self.device)
|
| 31 |
+
with torch.no_grad():
|
| 32 |
+
outputs = self.model(pixel_values=pixel_values)
|
| 33 |
+
logits = outputs.logits
|
| 34 |
+
upsampled_logits = nn.functional.interpolate(logits,
|
| 35 |
+
size=image.size[::-1],
|
| 36 |
+
mode="bilinear",
|
| 37 |
+
align_corners=False,)
|
| 38 |
+
pred_seg = upsampled_logits.argmax(dim=1)[0]
|
| 39 |
+
return pred_seg.tolist()
|