Initial commit
Browse files- adjacency_matrix/graph_dataset_comments.pkl +3 -0
- config.json +41 -0
- configuration_vgcn.py +33 -0
- modeling_vcgn.py +341 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +15 -0
- vocab.txt +0 -0
adjacency_matrix/graph_dataset_comments.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c118066ba0ab7c65b4dced7681f41b41e3526789f343f932027945a1fc83626
|
3 |
+
size 111026916
|
config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_probs_dropout_prob": 0.1,
|
3 |
+
"classifier_dropout": null,
|
4 |
+
"do_lower_case": 1,
|
5 |
+
"do_remove_accents": 0,
|
6 |
+
"gcn_adj_matrix": "adjacency_matrix/graph_dataset_comments.pkl",
|
7 |
+
"gcn_embedding_dim": 32,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "OTHER",
|
14 |
+
"1": "PROFANITY",
|
15 |
+
"2": "INSULT",
|
16 |
+
"3": "ABUSE"
|
17 |
+
},
|
18 |
+
"initializer_range": 0.02,
|
19 |
+
"intermediate_size": 3072,
|
20 |
+
"label2id": {
|
21 |
+
"ABUSE": 3,
|
22 |
+
"INSULT": 2,
|
23 |
+
"OTHER": 0,
|
24 |
+
"PROFANITY": 1
|
25 |
+
},
|
26 |
+
"layer_norm_eps": 1e-12,
|
27 |
+
"max_position_embeddings": 512,
|
28 |
+
"max_seq_len": 256,
|
29 |
+
"model_type": "vgcn",
|
30 |
+
"npmi_threshold": 0.2,
|
31 |
+
"num_attention_heads": 12,
|
32 |
+
"num_hidden_layers": 12,
|
33 |
+
"pad_token_id": 0,
|
34 |
+
"position_embedding_type": "absolute",
|
35 |
+
"tf_threshold": 0.0,
|
36 |
+
"transformers_version": "4.30.2",
|
37 |
+
"type_vocab_size": 2,
|
38 |
+
"use_cache": true,
|
39 |
+
"vocab_size": 37788,
|
40 |
+
"vocab_type": "pmi"
|
41 |
+
}
|
configuration_vgcn.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig, BertConfig
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
class VGCNConfig(BertConfig):
|
5 |
+
model_type = "vgcn"
|
6 |
+
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
gcn_adj_matrix: str ='',
|
10 |
+
max_seq_len: int = 256,
|
11 |
+
npmi_threshold: float = 0.2,
|
12 |
+
tf_threshold: float = 0.0,
|
13 |
+
vocab_type: str = "all",
|
14 |
+
gcn_embedding_dim: int = 32,
|
15 |
+
**kwargs,
|
16 |
+
):
|
17 |
+
if vocab_type not in ["all", "pmi", "tf"]:
|
18 |
+
raise ValueError(f"`vocab_type` must be 'all', 'pmi' or 'tf', got {vocab_type}.")
|
19 |
+
if max_seq_len < 1 or max_seq_len > 512:
|
20 |
+
raise ValueError(f"`max_seq_len` must be between 1 and 512, got {max_seq_len}.")
|
21 |
+
if npmi_threshold < 0.0 or npmi_threshold > 1.0:
|
22 |
+
raise ValueError(f"`npmi_threshold` must be between 0.0 and 1.0, got {npmi_threshold}.")
|
23 |
+
if tf_threshold < 0.0 or tf_threshold > 1.0:
|
24 |
+
raise ValueError(f"`tf_threshold` must be between 0.0 and 1.0, got {tf_threshold}.")
|
25 |
+
|
26 |
+
self.gcn_adj_matrix = gcn_adj_matrix
|
27 |
+
self.max_seq_len = max_seq_len
|
28 |
+
self.npmi_threshold = npmi_threshold
|
29 |
+
self.tf_threshold = tf_threshold
|
30 |
+
self.vocab_type = vocab_type
|
31 |
+
self.gcn_embedding_dim = gcn_embedding_dim
|
32 |
+
|
33 |
+
super().__init__(**kwargs)
|
modeling_vcgn.py
ADDED
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import PreTrainedModel, BertTokenizer
|
3 |
+
from transformers.utils import is_remote_url, download_url
|
4 |
+
from pathlib import Path
|
5 |
+
from configuration_vgcn import VGCNConfig
|
6 |
+
import pickle as pkl
|
7 |
+
import numpy as np
|
8 |
+
import scipy.sparse as sp
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
def get_torch_gcn(gcn_vocab_adj_tf, gcn_vocab_adj,gcn_config:VGCNConfig):
|
14 |
+
|
15 |
+
def sparse_scipy2torch(coo_sparse):
|
16 |
+
# coo_sparse=coo_sparse.tocoo()
|
17 |
+
i = torch.LongTensor(np.vstack((coo_sparse.row, coo_sparse.col)))
|
18 |
+
v = torch.from_numpy(coo_sparse.data)
|
19 |
+
return torch.sparse.FloatTensor(i, v, torch.Size(coo_sparse.shape))
|
20 |
+
|
21 |
+
def normalize_adj(adj):
|
22 |
+
"""
|
23 |
+
Symmetrically normalize adjacency matrix.
|
24 |
+
"""
|
25 |
+
|
26 |
+
D_matrix = np.array(adj.sum(axis=1)) # D-degree matrix as array (Diagonal, rest is 0.)
|
27 |
+
D_inv_sqrt = np.power(D_matrix, -0.5).flatten()
|
28 |
+
D_inv_sqrt[np.isinf(D_inv_sqrt)] = 0.
|
29 |
+
d_mat_inv_sqrt = sp.diags(D_inv_sqrt) # array to matrix
|
30 |
+
return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt) # D^(-1/2) . A . D^(-1/2)
|
31 |
+
|
32 |
+
gcn_vocab_adj_tf.data *= (gcn_vocab_adj_tf.data > gcn_config.tf_threshold)
|
33 |
+
gcn_vocab_adj_tf.eliminate_zeros()
|
34 |
+
|
35 |
+
gcn_vocab_adj.data *= (gcn_vocab_adj.data > gcn_config.npmi_threshold)
|
36 |
+
gcn_vocab_adj.eliminate_zeros()
|
37 |
+
|
38 |
+
if gcn_config.vocab_type == 'pmi':
|
39 |
+
gcn_vocab_adj_list = [gcn_vocab_adj]
|
40 |
+
elif gcn_config.vocab_type == 'tf':
|
41 |
+
gcn_vocab_adj_list = [gcn_vocab_adj_tf]
|
42 |
+
elif gcn_config.vocab_type == 'all':
|
43 |
+
gcn_vocab_adj_list = [gcn_vocab_adj_tf, gcn_vocab_adj]
|
44 |
+
else:
|
45 |
+
raise ValueError(f"vocab_type must be 'pmi', 'tf' or 'all', got {gcn_config.vocab_type}")
|
46 |
+
|
47 |
+
norm_gcn_vocab_adj_list = []
|
48 |
+
for i in range(len(gcn_vocab_adj_list)):
|
49 |
+
adj = gcn_vocab_adj_list[i]
|
50 |
+
adj = normalize_adj(adj)
|
51 |
+
norm_gcn_vocab_adj_list.append(sparse_scipy2torch(adj.tocoo()))
|
52 |
+
|
53 |
+
del gcn_vocab_adj_list
|
54 |
+
|
55 |
+
return norm_gcn_vocab_adj_list
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
class VCGNModelForTextClassification(PreTrainedModel):
|
60 |
+
config_class = VGCNConfig
|
61 |
+
|
62 |
+
def __init__(self, config):
|
63 |
+
super().__init__(config)
|
64 |
+
|
65 |
+
self.pre_trained_model_name = ''
|
66 |
+
self.remove_stop_words = False
|
67 |
+
self.tokenizer = None
|
68 |
+
self.norm_gcn_vocab_adj_list = None
|
69 |
+
|
70 |
+
|
71 |
+
self.load_adj_matrix(config.gcn_adj_matrix)
|
72 |
+
|
73 |
+
self.model = VGCN_Bert(
|
74 |
+
config,
|
75 |
+
gcn_adj_matrix=self.norm_gcn_vocab_adj_list,
|
76 |
+
gcn_adj_dim=config.vocab_size,
|
77 |
+
gcn_adj_num=len(self.norm_gcn_vocab_adj_list),
|
78 |
+
gcn_embedding_dim=config.gcn_embedding_dim,
|
79 |
+
|
80 |
+
)
|
81 |
+
|
82 |
+
def load_adj_matrix(self, adj_matrix):
|
83 |
+
if Path(adj_matrix).is_file():
|
84 |
+
#load file
|
85 |
+
gcn_vocab_adj_tf, gcn_vocab_adj, adj_config = pkl.load(open(adj_matrix, 'rb'))
|
86 |
+
if is_remote_url(adj_matrix):
|
87 |
+
resolved_archive_file = download_url(adj_matrix)
|
88 |
+
|
89 |
+
self.pre_trained_model_name = adj_config['bert_model']
|
90 |
+
self.remove_stop_words = adj_config['remove_stop_words']
|
91 |
+
self.tokenizer = BertTokenizer.from_pretrained(self.pre_trained_model_name)
|
92 |
+
self.norm_gcn_vocab_adj_list = get_torch_gcn(gcn_vocab_adj_tf, gcn_vocab_adj, self.config)
|
93 |
+
|
94 |
+
|
95 |
+
def forward(self, tensor, labels=None):
|
96 |
+
logits = self.model(tensor)
|
97 |
+
if labels is not None:
|
98 |
+
loss = torch.nn.cross_entropy(logits, labels)
|
99 |
+
return {"loss": loss, "logits": logits}
|
100 |
+
return {"logits": logits}
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
import torch
|
105 |
+
import torch.nn as nn
|
106 |
+
import torch.nn.init as init
|
107 |
+
import math
|
108 |
+
|
109 |
+
from transformers import BertModel
|
110 |
+
from transformers.models.bert.modeling_bert import BertEmbeddings, BertPooler,BertEncoder
|
111 |
+
|
112 |
+
class VocabGraphConvolution(nn.Module):
|
113 |
+
"""Vocabulary GCN module.
|
114 |
+
|
115 |
+
Params:
|
116 |
+
`voc_dim`: The size of vocabulary graph
|
117 |
+
`num_adj`: The number of the adjacency matrix of Vocabulary graph
|
118 |
+
`hid_dim`: The hidden dimension after XAW
|
119 |
+
`out_dim`: The output dimension after Relu(XAW)W
|
120 |
+
`dropout_rate`: The dropout probabilitiy for all fully connected
|
121 |
+
layers in the embeddings, encoder, and pooler.
|
122 |
+
|
123 |
+
Inputs:
|
124 |
+
`vocab_adj_list`: The list of the adjacency matrix
|
125 |
+
`X_dv`: the feature of mini batch document, can be TF-IDF (batch, vocab), or word embedding (batch, word_embedding_dim, vocab)
|
126 |
+
|
127 |
+
Outputs:
|
128 |
+
The graph embedding representation, dimension (batch, `out_dim`) or (batch, word_embedding_dim, `out_dim`)
|
129 |
+
|
130 |
+
"""
|
131 |
+
def __init__(self,adj_matrix,voc_dim, num_adj, hid_dim, out_dim, dropout_rate=0.2):
|
132 |
+
super(VocabGraphConvolution, self).__init__()
|
133 |
+
self.adj_matrix=adj_matrix
|
134 |
+
self.voc_dim=voc_dim
|
135 |
+
self.num_adj=num_adj
|
136 |
+
self.hid_dim=hid_dim
|
137 |
+
self.out_dim=out_dim
|
138 |
+
|
139 |
+
for i in range(self.num_adj):
|
140 |
+
setattr(self, 'W%d_vh'%i, nn.Parameter(torch.randn(voc_dim, hid_dim)))
|
141 |
+
|
142 |
+
self.fc_hc=nn.Linear(hid_dim,out_dim)
|
143 |
+
self.act_func = nn.ReLU()
|
144 |
+
self.dropout = nn.Dropout(dropout_rate)
|
145 |
+
|
146 |
+
self.reset_parameters()
|
147 |
+
|
148 |
+
def reset_parameters(self):
|
149 |
+
for n,p in self.named_parameters():
|
150 |
+
if n.startswith('W') or n.startswith('a') or n in ('W','a','dense'):
|
151 |
+
init.kaiming_uniform_(p, a=math.sqrt(5))
|
152 |
+
|
153 |
+
def forward(self, X_dv, add_linear_mapping_term=False):
|
154 |
+
for i in range(self.num_adj):
|
155 |
+
H_vh=self.adj_matrix[i].mm(getattr(self, 'W%d_vh'%i))
|
156 |
+
# H_vh=self.dropout(F.elu(H_vh))
|
157 |
+
H_vh=self.dropout(H_vh)
|
158 |
+
H_dh=X_dv.matmul(H_vh)
|
159 |
+
|
160 |
+
if add_linear_mapping_term:
|
161 |
+
H_linear=X_dv.matmul(getattr(self, 'W%d_vh'%i))
|
162 |
+
H_linear=self.dropout(H_linear)
|
163 |
+
H_dh+=H_linear
|
164 |
+
|
165 |
+
if i == 0:
|
166 |
+
fused_H = H_dh
|
167 |
+
else:
|
168 |
+
fused_H += H_dh
|
169 |
+
|
170 |
+
out=self.fc_hc(fused_H)
|
171 |
+
return out
|
172 |
+
|
173 |
+
|
174 |
+
class VGCNBertEmbeddings(BertEmbeddings):
|
175 |
+
"""Construct the embeddings from word, VGCN graph, position and token_type embeddings.
|
176 |
+
|
177 |
+
Params:
|
178 |
+
`config`: a BertConfig class instance with the configuration to build a new model
|
179 |
+
`gcn_adj_dim`: The size of vocabulary graph
|
180 |
+
`gcn_adj_num`: The number of the adjacency matrix of Vocabulary graph
|
181 |
+
`gcn_embedding_dim`: The output dimension after VGCN
|
182 |
+
|
183 |
+
Inputs:
|
184 |
+
`vocab_adj_list`: The list of the adjacency matrix
|
185 |
+
`gcn_swop_eye`: The transform matrix for transform the token sequence (sentence) to the Vocabulary order (BoW order)
|
186 |
+
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
|
187 |
+
with the word token indices in the vocabulary. Items in the batch should begin with the special "CLS" token. (see the tokens preprocessing logic in the scripts
|
188 |
+
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
|
189 |
+
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
|
190 |
+
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
|
191 |
+
a `sentence B` token (see BERT paper for more details).
|
192 |
+
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
|
193 |
+
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
|
194 |
+
input sequence length in the current batch. It's the mask that we typically use for attention when
|
195 |
+
a batch has varying length sentences.
|
196 |
+
|
197 |
+
Outputs:
|
198 |
+
the word embeddings fused by VGCN embedding, position embedding and token_type embeddings.
|
199 |
+
|
200 |
+
"""
|
201 |
+
def __init__(self, config, gcn_adj_matrix, gcn_adj_dim, gcn_adj_num, gcn_embedding_dim):
|
202 |
+
super(VGCNBertEmbeddings, self).__init__(config)
|
203 |
+
assert gcn_embedding_dim>=0
|
204 |
+
self.gcn_adj_matrix=gcn_adj_matrix
|
205 |
+
self.gcn_embedding_dim=gcn_embedding_dim
|
206 |
+
self.vocab_gcn=VocabGraphConvolution(gcn_adj_matrix,gcn_adj_dim, gcn_adj_num, 128, gcn_embedding_dim) #192/256
|
207 |
+
|
208 |
+
def forward(self, gcn_swop_eye, input_ids, token_type_ids=None, attention_mask=None):
|
209 |
+
words_embeddings = self.word_embeddings(input_ids)
|
210 |
+
vocab_input=gcn_swop_eye.matmul(words_embeddings).transpose(1,2)
|
211 |
+
|
212 |
+
if self.gcn_embedding_dim>0:
|
213 |
+
gcn_vocab_out = self.vocab_gcn(vocab_input)
|
214 |
+
|
215 |
+
gcn_words_embeddings=words_embeddings.clone()
|
216 |
+
for i in range(self.gcn_embedding_dim):
|
217 |
+
tmp_pos=(attention_mask.sum(-1)-2-self.gcn_embedding_dim+1+i)+torch.arange(0,input_ids.shape[0]).to(input_ids.device)*input_ids.shape[1]
|
218 |
+
gcn_words_embeddings.flatten(start_dim=0, end_dim=1)[tmp_pos,:]=gcn_vocab_out[:,:,i]
|
219 |
+
|
220 |
+
seq_length = input_ids.size(1)
|
221 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
|
222 |
+
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
|
223 |
+
if token_type_ids is None:
|
224 |
+
token_type_ids = torch.zeros_like(input_ids)
|
225 |
+
|
226 |
+
position_embeddings = self.position_embeddings(position_ids)
|
227 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
228 |
+
|
229 |
+
if self.gcn_embedding_dim>0:
|
230 |
+
embeddings = gcn_words_embeddings + position_embeddings + token_type_embeddings
|
231 |
+
else:
|
232 |
+
embeddings = words_embeddings + position_embeddings + token_type_embeddings
|
233 |
+
|
234 |
+
embeddings = self.LayerNorm(embeddings)
|
235 |
+
embeddings = self.dropout(embeddings)
|
236 |
+
return embeddings
|
237 |
+
|
238 |
+
|
239 |
+
class VGCN_Bert(BertModel):
|
240 |
+
"""VGCN-BERT model for text classification. It inherits from Huggingface's BertModel.
|
241 |
+
|
242 |
+
Params:
|
243 |
+
`config`: a BertConfig class instance with the configuration to build a new model
|
244 |
+
`gcn_adj_dim`: The size of vocabulary graph
|
245 |
+
`gcn_adj_num`: The number of the adjacency matrix of Vocabulary graph
|
246 |
+
`gcn_embedding_dim`: The output dimension after VGCN
|
247 |
+
`num_labels`: the number of classes for the classifier. Default = 2.
|
248 |
+
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
|
249 |
+
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
|
250 |
+
This can be used to compute head importance metrics. Default: False
|
251 |
+
|
252 |
+
Inputs:
|
253 |
+
`vocab_adj_list`: The list of the adjacency matrix
|
254 |
+
`gcn_swop_eye`: The transform matrix for transform the token sequence (sentence) to the Vocabulary order (BoW order)
|
255 |
+
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
|
256 |
+
with the word token indices in the vocabulary. Items in the batch should begin with the special "CLS" token. (see the tokens preprocessing logic in the scripts
|
257 |
+
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
|
258 |
+
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
|
259 |
+
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
|
260 |
+
a `sentence B` token (see BERT paper for more details).
|
261 |
+
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
|
262 |
+
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
|
263 |
+
input sequence length in the current batch. It's the mask that we typically use for attention when
|
264 |
+
a batch has varying length sentences.
|
265 |
+
`labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
|
266 |
+
with indices selected in [0, ..., num_labels].
|
267 |
+
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
|
268 |
+
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
|
269 |
+
|
270 |
+
Outputs:
|
271 |
+
Outputs the classification logits of shape [batch_size, num_labels].
|
272 |
+
|
273 |
+
"""
|
274 |
+
def __init__(self, config, gcn_adj_matrix, gcn_adj_dim, gcn_adj_num, gcn_embedding_dim):
|
275 |
+
super(VGCN_Bert, self).__init__(config)
|
276 |
+
self.embeddings = VGCNBertEmbeddings(config,gcn_adj_matrix,gcn_adj_dim,gcn_adj_num, gcn_embedding_dim)
|
277 |
+
self.encoder = BertEncoder(config)
|
278 |
+
self.pooler = BertPooler(config)
|
279 |
+
self.gcn_adj_matrix=gcn_adj_matrix
|
280 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
281 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
282 |
+
self.will_collect_cls_states=False
|
283 |
+
self.all_cls_states=[]
|
284 |
+
self.output_attentions=config.output_attentions
|
285 |
+
|
286 |
+
# self.apply(self.init_bert_weights)
|
287 |
+
|
288 |
+
def forward(self, gcn_swop_eye, input_ids, token_type_ids=None, attention_mask=None, output_hidden_states=False, head_mask=None):
|
289 |
+
if token_type_ids is None:
|
290 |
+
token_type_ids = torch.zeros_like(input_ids)
|
291 |
+
if attention_mask is None:
|
292 |
+
attention_mask = torch.ones_like(input_ids)
|
293 |
+
embedding_output = self.embeddings(gcn_swop_eye, input_ids, token_type_ids,attention_mask)
|
294 |
+
|
295 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
296 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
297 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
298 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
299 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
300 |
+
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
301 |
+
|
302 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
303 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
304 |
+
# positions we want to attend and -10000.0 for masked positions.
|
305 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
306 |
+
# effectively the same as removing these entirely.
|
307 |
+
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
|
308 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
309 |
+
|
310 |
+
# Prepare head mask if needed
|
311 |
+
# 1.0 in head_mask indicate we keep the head
|
312 |
+
# attention_probs has shape bsz x n_heads x N x N
|
313 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
314 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
315 |
+
if head_mask is not None:
|
316 |
+
if head_mask.dim() == 1:
|
317 |
+
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
|
318 |
+
head_mask = head_mask.expand_as(self.config.num_hidden_layers, -1, -1, -1, -1)
|
319 |
+
elif head_mask.dim() == 2:
|
320 |
+
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer
|
321 |
+
head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
|
322 |
+
else:
|
323 |
+
head_mask = [None] * self.config.num_hidden_layers
|
324 |
+
|
325 |
+
if self.output_attentions:
|
326 |
+
output_all_encoded_layers=True
|
327 |
+
encoded_layers = self.encoder(embedding_output,
|
328 |
+
extended_attention_mask,
|
329 |
+
output_hidden_states=output_hidden_states,
|
330 |
+
head_mask=head_mask)
|
331 |
+
if self.output_attentions:
|
332 |
+
all_attentions, encoded_layers = encoded_layers
|
333 |
+
|
334 |
+
pooled_output = self.pooler(encoded_layers[-1])
|
335 |
+
pooled_output = self.dropout(pooled_output)
|
336 |
+
logits = self.classifier(pooled_output)
|
337 |
+
|
338 |
+
if self.output_attentions:
|
339 |
+
return all_attentions, logits
|
340 |
+
|
341 |
+
return logits
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b23581bedc6271217c0910a5676cfbb76a36b8b707a8f8f4171986cc6e5d8dd
|
3 |
+
size 479695719
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"clean_up_tokenization_spaces": true,
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"do_basic_tokenize": true,
|
5 |
+
"do_lower_case": true,
|
6 |
+
"mask_token": "[MASK]",
|
7 |
+
"model_max_length": 512,
|
8 |
+
"never_split": null,
|
9 |
+
"pad_token": "[PAD]",
|
10 |
+
"sep_token": "[SEP]",
|
11 |
+
"strip_accents": false,
|
12 |
+
"tokenize_chinese_chars": true,
|
13 |
+
"tokenizer_class": "BertTokenizer",
|
14 |
+
"unk_token": "[UNK]"
|
15 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|