Update README.md
Browse files
README.md
CHANGED
@@ -20,31 +20,16 @@ pipeline_tag: visual-question-answering
|
|
20 |
|
21 |
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
22 |
|
23 |
-
- **Developed by:**
|
24 |
-
- **
|
25 |
-
- **
|
26 |
-
- **
|
27 |
-
- **Language(s) (NLP):** [More Information Needed]
|
28 |
-
- **License:** [More Information Needed]
|
29 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
30 |
|
31 |
-
### Model Sources [optional]
|
32 |
-
|
33 |
-
<!-- Provide the basic links for the model. -->
|
34 |
-
|
35 |
-
- **Repository:** [More Information Needed]
|
36 |
-
- **Paper [optional]:** [More Information Needed]
|
37 |
-
- **Demo [optional]:** [More Information Needed]
|
38 |
|
39 |
## Uses
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
### Recommendations
|
44 |
-
|
45 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
46 |
|
47 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
48 |
|
49 |
## How to Get Started with the Model
|
50 |
|
@@ -60,10 +45,10 @@ from transformers import AutoProcessor, AutoModelForCausalLM
|
|
60 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
61 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
62 |
|
63 |
-
model = AutoModelForCausalLM.from_pretrained("
|
64 |
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True)
|
65 |
|
66 |
-
prompt = "<
|
67 |
|
68 |
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
|
69 |
image = Image.open(requests.get(url, stream=True).raw)
|
@@ -73,15 +58,13 @@ inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, to
|
|
73 |
generated_ids = model.generate(
|
74 |
input_ids=inputs["input_ids"],
|
75 |
pixel_values=inputs["pixel_values"],
|
76 |
-
max_new_tokens=
|
77 |
do_sample=False,
|
78 |
num_beams=3
|
79 |
)
|
80 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
print(parsed_answer)
|
85 |
```
|
86 |
|
87 |
|
@@ -89,123 +72,40 @@ print(parsed_answer)
|
|
89 |
|
90 |
### Training Data
|
91 |
|
92 |
-
|
93 |
|
94 |
-
[More Information Needed]
|
95 |
|
96 |
### Training Procedure
|
97 |
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
#### Preprocessing [optional]
|
101 |
|
102 |
-
|
103 |
-
|
104 |
|
105 |
-
|
106 |
|
107 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
108 |
-
|
109 |
-
#### Speeds, Sizes, Times [optional]
|
110 |
-
|
111 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
|
115 |
## Evaluation
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
### Testing Data, Factors & Metrics
|
120 |
-
|
121 |
-
#### Testing Data
|
122 |
-
|
123 |
-
<!-- This should link to a Dataset Card if possible. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
#### Factors
|
128 |
-
|
129 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
130 |
-
|
131 |
-
[More Information Needed]
|
132 |
-
|
133 |
-
#### Metrics
|
134 |
-
|
135 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
136 |
-
|
137 |
-
[More Information Needed]
|
138 |
-
|
139 |
-
### Results
|
140 |
-
|
141 |
-
[More Information Needed]
|
142 |
-
|
143 |
-
#### Summary
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
## Model Examination [optional]
|
148 |
-
|
149 |
-
<!-- Relevant interpretability work for the model goes here -->
|
150 |
-
|
151 |
-
[More Information Needed]
|
152 |
-
|
153 |
-
## Environmental Impact
|
154 |
-
|
155 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
156 |
-
|
157 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
158 |
-
|
159 |
-
- **Hardware Type:** [More Information Needed]
|
160 |
-
- **Hours used:** [More Information Needed]
|
161 |
-
- **Cloud Provider:** [More Information Needed]
|
162 |
-
- **Compute Region:** [More Information Needed]
|
163 |
-
- **Carbon Emitted:** [More Information Needed]
|
164 |
-
|
165 |
-
## Technical Specifications [optional]
|
166 |
-
|
167 |
-
### Model Architecture and Objective
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
### Compute Infrastructure
|
172 |
-
|
173 |
-
[More Information Needed]
|
174 |
-
|
175 |
-
#### Hardware
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
#### Software
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Citation [optional]
|
184 |
-
|
185 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
186 |
-
|
187 |
-
**BibTeX:**
|
188 |
-
|
189 |
-
[More Information Needed]
|
190 |
-
|
191 |
-
**APA:**
|
192 |
-
|
193 |
-
[More Information Needed]
|
194 |
-
|
195 |
-
## Glossary [optional]
|
196 |
-
|
197 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
## More Information [optional]
|
202 |
-
|
203 |
-
[More Information Needed]
|
204 |
-
|
205 |
-
## Model Card Authors [optional]
|
206 |
-
|
207 |
-
[More Information Needed]
|
208 |
-
|
209 |
-
## Model Card Contact
|
210 |
-
|
211 |
-
[More Information Needed]
|
|
|
20 |
|
21 |
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
22 |
|
23 |
+
- **Developed by:** Aniket Maurya
|
24 |
+
- **Model type:** Visual language model
|
25 |
+
- **License:** MIT
|
26 |
+
- **Finetuned from model [optional]:** microsoft/Florence-2-base-ft
|
|
|
|
|
|
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
## Uses
|
30 |
|
31 |
+
Use this model for extracting total amount from a receipt.
|
|
|
|
|
|
|
|
|
32 |
|
|
|
33 |
|
34 |
## How to Get Started with the Model
|
35 |
|
|
|
45 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
46 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
47 |
|
48 |
+
model = AutoModelForCausalLM.from_pretrained("aniketmaurya/receipt-model-2025", torch_dtype=torch_dtype, trust_remote_code=True).to(device)
|
49 |
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True)
|
50 |
|
51 |
+
prompt = "<VQA>Given the following receipt, extract the total amount spent."
|
52 |
|
53 |
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
|
54 |
image = Image.open(requests.get(url, stream=True).raw)
|
|
|
58 |
generated_ids = model.generate(
|
59 |
input_ids=inputs["input_ids"],
|
60 |
pixel_values=inputs["pixel_values"],
|
61 |
+
max_new_tokens=100,
|
62 |
do_sample=False,
|
63 |
num_beams=3
|
64 |
)
|
65 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
66 |
|
67 |
+
print(generated_text)
|
|
|
|
|
68 |
```
|
69 |
|
70 |
|
|
|
72 |
|
73 |
### Training Data
|
74 |
|
75 |
+
Public receipt data comprising 216 images forked from Roboflow universe and annotated manually for total amount.
|
76 |
|
|
|
77 |
|
78 |
### Training Procedure
|
79 |
|
80 |
+
Training configuration
|
81 |
+
```
|
82 |
+
{
|
83 |
+
'model_id': 'microsoft/Florence-2-base-ft',
|
84 |
+
'revision': 'refs/pr/20',
|
85 |
+
'epochs': 30,
|
86 |
+
'optimizer': 'adamw',
|
87 |
+
'lr': 5e-06,
|
88 |
+
'lr_scheduler': 'linear',
|
89 |
+
'batch_size': 8,
|
90 |
+
'val_batch_size': None,
|
91 |
+
'num_workers': 0,
|
92 |
+
'val_num_workers': None,
|
93 |
+
'lora_r': 8,
|
94 |
+
'lora_alpha': 8,
|
95 |
+
'lora_dropout': 0.05,
|
96 |
+
'bias': 'none',
|
97 |
+
'use_rslora': True,
|
98 |
+
'init_lora_weights': 'gaussian',
|
99 |
+
}
|
100 |
+
```
|
101 |
|
102 |
#### Preprocessing [optional]
|
103 |
|
104 |
+
**Image augmentations:**
|
|
|
105 |
|
106 |
+
- shear, random rotate, and noise
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
## Evaluation
|
110 |
|
111 |
+
Vibe check 😎
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|