# Install required packages first: # pip install torch transformers safetensors import torch from transformers import AutoTokenizer, AutoModelForCausalLM # ----------------------------- # 1️⃣ Load the trained model # ----------------------------- model_path = "./mini_gpt_safetensor" # folder where model was saved print("📥 Loading model and tokenizer...") tokenizer = AutoTokenizer.from_pretrained(model_path) tokenizer.pad_token = tokenizer.eos_token # GPT models don't have pad_token model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto") # load model # ----------------------------- # 2️⃣ Generate text # ----------------------------- def generate_text(prompt, max_length=50): # Tokenize prompt input_ids = tokenizer(prompt, return_tensors="pt").input_ids input_ids = input_ids.to(model.device) # Generate text output_ids = model.generate( input_ids, max_length=max_length, do_sample=True, # for randomness top_k=50, # sample from top 50 tokens top_p=0.95, # nucleus sampling temperature=0.7, num_return_sequences=1 ) # Decode output output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) return output_text # ----------------------------- # 3️⃣ Test generation # ----------------------------- prompt = "Hello, I am training a mini GPT model" generated_text = generate_text(prompt, max_length=50) print("\n📝 Generated text:") print(generated_text)