Upload 1040_249_949.py
Browse files- 1040_249_949.py +76 -0
1040_249_949.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""1040_249_949
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1T8VCDZs5tRg-mTI4qNqCct_92fcd_7Rl
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import pandas as pd
|
| 11 |
+
import matplotlib.pyplot as plt
|
| 12 |
+
import seaborn as sns
|
| 13 |
+
import numpy as np
|
| 14 |
+
import warnings as w
|
| 15 |
+
w.filterwarnings('ignore')
|
| 16 |
+
|
| 17 |
+
df=pd.read_csv('//content/1000_ml_jobs_us.csv')
|
| 18 |
+
|
| 19 |
+
df.head()
|
| 20 |
+
|
| 21 |
+
df.isnull().sum()
|
| 22 |
+
|
| 23 |
+
df.drop(columns=['company_website', 'company_description', 'job_description_text', 'Unnamed: 0'], inplace=True)
|
| 24 |
+
|
| 25 |
+
df['company_address_locality'] = df['company_address_locality'].fillna(df['company_address_locality'].mode()[0])
|
| 26 |
+
df['company_address_region'] = df['company_address_region'].fillna(df['company_address_region'].mode()[0])
|
| 27 |
+
df['seniority_level'] = (df['seniority_level'].fillna(df['seniority_level']).mode()[0])
|
| 28 |
+
|
| 29 |
+
df.info()
|
| 30 |
+
|
| 31 |
+
df['job_posted_date'] = pd.to_datetime(df['job_posted_date'])
|
| 32 |
+
|
| 33 |
+
df['company_address_locality'].value_counts().head(10).plot(kind='bar', title='Top 10 Localities')
|
| 34 |
+
|
| 35 |
+
df['company_address_region'].value_counts().head(10).plot(kind='bar', title='Top 10 Regions')
|
| 36 |
+
|
| 37 |
+
df['company_name'].value_counts().head(10).plot(kind='barh', title='Top 10 Hiring Companies')
|
| 38 |
+
|
| 39 |
+
df['seniority_level'].value_counts().plot(kind='pie', autopct='%1.1f%%', title='Seniority Level Distribution')
|
| 40 |
+
|
| 41 |
+
df['job_title'].value_counts().head(15).plot(kind='bar', title='Top 15 Job Titles')
|
| 42 |
+
|
| 43 |
+
import pandas as pd
|
| 44 |
+
from sklearn.preprocessing import LabelEncoder
|
| 45 |
+
from sklearn.model_selection import train_test_split
|
| 46 |
+
from sklearn.ensemble import RandomForestClassifier
|
| 47 |
+
from sklearn.metrics import classification_report, accuracy_score
|
| 48 |
+
import warnings as w
|
| 49 |
+
w.filterwarnings('ignore')
|
| 50 |
+
|
| 51 |
+
# Load data (assuming the previous steps for loading and cleaning the data were successful)
|
| 52 |
+
# df=pd.read_csv('//content/1000_ml_jobs_us.csv')
|
| 53 |
+
# ... (previous data cleaning and preparation steps) ...
|
| 54 |
+
|
| 55 |
+
le = LabelEncoder()
|
| 56 |
+
|
| 57 |
+
# Apply LabelEncoder to all relevant categorical columns outside the training loop
|
| 58 |
+
for col in ['job_posted_date', 'company_address_locality', 'company_address_region', 'company_name', 'job_title']:
|
| 59 |
+
df[col] = le.fit_transform(df[col].astype(str))
|
| 60 |
+
|
| 61 |
+
# Define features (X) and target (y) after encoding
|
| 62 |
+
X = df.drop('seniority_level', axis=1)
|
| 63 |
+
y = le.fit_transform(df['seniority_level']) # Encode the target variable as well
|
| 64 |
+
|
| 65 |
+
# Perform the train-test split
|
| 66 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
| 67 |
+
|
| 68 |
+
# Initialize and train the model
|
| 69 |
+
model = RandomForestClassifier(random_state=42)
|
| 70 |
+
model.fit(X_train, y_train)
|
| 71 |
+
|
| 72 |
+
# Make predictions and evaluate the model
|
| 73 |
+
y_pred = model.predict(X_test)
|
| 74 |
+
|
| 75 |
+
print("Accuracy:", accuracy_score(y_test, y_pred))
|
| 76 |
+
print(classification_report(y_test, y_pred))
|