Upload wealthfortress2_0.py
Browse files- wealthfortress2_0.py +552 -0
wealthfortress2_0.py
ADDED
|
@@ -0,0 +1,552 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""WealthFortress2.0
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1GH8ouvd4W8xGw_tGZ7VgSMxz0wVsfN7Z
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
pip install torch cryptography numpy
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
import numpy as np
|
| 14 |
+
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
|
| 15 |
+
from cryptography.hazmat.backends import default_backend
|
| 16 |
+
from cryptography.hazmat.primitives import padding
|
| 17 |
+
|
| 18 |
+
# Step 1: Generate the dense wave (sinusoidal waveform modulated by message data)
|
| 19 |
+
def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float):
|
| 20 |
+
t = torch.linspace(0, duration, int(sample_rate * duration))
|
| 21 |
+
# Convert message to numerical values (simple encoding)
|
| 22 |
+
message_bytes = [ord(c) for c in message]
|
| 23 |
+
message_tensor = torch.tensor(message_bytes, dtype=torch.float32)
|
| 24 |
+
# Create a carrier wave (sine wave)
|
| 25 |
+
carrier_wave = torch.sin(2 * np.pi * frequency * t)
|
| 26 |
+
# Modulate the carrier wave with the message tensor
|
| 27 |
+
modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t)
|
| 28 |
+
return modulated_wave
|
| 29 |
+
|
| 30 |
+
# Step 2: Encrypt the message
|
| 31 |
+
def encrypt_message(message: str, key: bytes):
|
| 32 |
+
backend = default_backend()
|
| 33 |
+
iv = b'\x00' * 16 # Initialization vector (in a real system, use a secure IV)
|
| 34 |
+
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)
|
| 35 |
+
encryptor = cipher.encryptor()
|
| 36 |
+
|
| 37 |
+
# Pad the message to be AES block-size compliant
|
| 38 |
+
padder = padding.PKCS7(algorithms.AES.block_size).padder()
|
| 39 |
+
padded_data = padder.update(message.encode()) + padder.finalize()
|
| 40 |
+
|
| 41 |
+
encrypted_message = encryptor.update(padded_data) + encryptor.finalize()
|
| 42 |
+
return encrypted_message
|
| 43 |
+
|
| 44 |
+
# Step 3: Modulate encrypted message into the waveform
|
| 45 |
+
def modulate_wave_with_encryption(wave: torch.Tensor, encrypted_message: bytes):
|
| 46 |
+
# Convert encrypted message to tensor
|
| 47 |
+
encrypted_tensor = torch.tensor([byte for byte in encrypted_message], dtype=torch.float32)
|
| 48 |
+
# Normalize encrypted tensor and modulate it with the wave
|
| 49 |
+
modulated_wave = wave * encrypted_tensor.mean()
|
| 50 |
+
return modulated_wave
|
| 51 |
+
|
| 52 |
+
# Step 4: Demodulate and decrypt
|
| 53 |
+
def decrypt_message(encrypted_message: bytes, key: bytes):
|
| 54 |
+
backend = default_backend()
|
| 55 |
+
iv = b'\x00' * 16 # Same IV as in encryption
|
| 56 |
+
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)
|
| 57 |
+
decryptor = cipher.decryptor()
|
| 58 |
+
|
| 59 |
+
decrypted_padded = decryptor.update(encrypted_message) + decryptor.finalize()
|
| 60 |
+
|
| 61 |
+
# Unpad the message
|
| 62 |
+
unpadder = padding.PKCS7(algorithms.AES.block_size).unpadder()
|
| 63 |
+
decrypted_message = unpadder.update(decrypted_padded) + unpadder.finalize()
|
| 64 |
+
|
| 65 |
+
return decrypted_message.decode()
|
| 66 |
+
|
| 67 |
+
# Step 5: Transform into wealth data (dummy transformation for demo)
|
| 68 |
+
def transform_to_wealth_data(decrypted_message: str):
|
| 69 |
+
# In a real-world application, this would involve parsing wealth-specific fields
|
| 70 |
+
wealth_data = {
|
| 71 |
+
"original_message": decrypted_message,
|
| 72 |
+
"net_worth": len(decrypted_message) * 1000, # Dummy wealth computation
|
| 73 |
+
"assets": len(decrypted_message) * 500,
|
| 74 |
+
}
|
| 75 |
+
return wealth_data
|
| 76 |
+
|
| 77 |
+
# Example usage
|
| 78 |
+
if __name__ == "__main__":
|
| 79 |
+
# Initial settings
|
| 80 |
+
message = "Transfer 1000 units"
|
| 81 |
+
key = b'\x01' * 32 # AES-256 key
|
| 82 |
+
frequency = 5.0 # Frequency in Hz
|
| 83 |
+
sample_rate = 100 # Samples per second
|
| 84 |
+
duration = 1.0 # Wave duration in seconds
|
| 85 |
+
|
| 86 |
+
# Step 1: Create dense wave
|
| 87 |
+
wave = generate_dense_wave(message, frequency, sample_rate, duration)
|
| 88 |
+
|
| 89 |
+
# Step 2: Encrypt the message
|
| 90 |
+
encrypted_message = encrypt_message(message, key)
|
| 91 |
+
|
| 92 |
+
# Step 3: Modulate the wave with encrypted message
|
| 93 |
+
modulated_wave = modulate_wave_with_encryption(wave, encrypted_message)
|
| 94 |
+
|
| 95 |
+
# Step 4: Decrypt the message (for demonstration)
|
| 96 |
+
decrypted_message = decrypt_message(encrypted_message, key)
|
| 97 |
+
|
| 98 |
+
# Step 5: Transform to wealth data
|
| 99 |
+
wealth_data = transform_to_wealth_data(decrypted_message)
|
| 100 |
+
|
| 101 |
+
print("Wealth Data:", wealth_data)
|
| 102 |
+
|
| 103 |
+
pip install matplotlib
|
| 104 |
+
|
| 105 |
+
import torch
|
| 106 |
+
import numpy as np
|
| 107 |
+
import matplotlib.pyplot as plt
|
| 108 |
+
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
|
| 109 |
+
from cryptography.hazmat.backends import default_backend
|
| 110 |
+
from cryptography.hazmat.primitives import padding
|
| 111 |
+
|
| 112 |
+
# Step 1: Generate the dense wave (sinusoidal waveform modulated by message data)
|
| 113 |
+
def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float):
|
| 114 |
+
t = torch.linspace(0, duration, int(sample_rate * duration))
|
| 115 |
+
# Convert message to numerical values (simple encoding)
|
| 116 |
+
message_bytes = [ord(c) for c in message]
|
| 117 |
+
message_tensor = torch.tensor(message_bytes, dtype=torch.float32)
|
| 118 |
+
# Create a carrier wave (sine wave)
|
| 119 |
+
carrier_wave = torch.sin(2 * np.pi * frequency * t)
|
| 120 |
+
# Modulate the carrier wave with the message tensor
|
| 121 |
+
modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t)
|
| 122 |
+
return t, carrier_wave, modulated_wave
|
| 123 |
+
|
| 124 |
+
# Step 2: Encrypt the message
|
| 125 |
+
def encrypt_message(message: str, key: bytes):
|
| 126 |
+
backend = default_backend()
|
| 127 |
+
iv = b'\x00' * 16 # Initialization vector (in a real system, use a secure IV)
|
| 128 |
+
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)
|
| 129 |
+
encryptor = cipher.encryptor()
|
| 130 |
+
|
| 131 |
+
# Pad the message to be AES block-size compliant
|
| 132 |
+
padder = padding.PKCS7(algorithms.AES.block_size).padder()
|
| 133 |
+
padded_data = padder.update(message.encode()) + padder.finalize()
|
| 134 |
+
|
| 135 |
+
encrypted_message = encryptor.update(padded_data) + encryptor.finalize()
|
| 136 |
+
return encrypted_message
|
| 137 |
+
|
| 138 |
+
# Step 3: Modulate encrypted message into the waveform
|
| 139 |
+
def modulate_wave_with_encryption(wave: torch.Tensor, encrypted_message: bytes):
|
| 140 |
+
# Convert encrypted message to tensor
|
| 141 |
+
encrypted_tensor = torch.tensor([byte for byte in encrypted_message], dtype=torch.float32)
|
| 142 |
+
# Normalize encrypted tensor and modulate it with the wave
|
| 143 |
+
modulated_wave = wave * encrypted_tensor.mean()
|
| 144 |
+
return modulated_wave
|
| 145 |
+
|
| 146 |
+
# Step 4: Visualization using Matplotlib
|
| 147 |
+
def visualize_modulation(t, carrier_wave, modulated_wave):
|
| 148 |
+
plt.figure(figsize=(12, 6))
|
| 149 |
+
|
| 150 |
+
# Plot the original carrier wave
|
| 151 |
+
plt.subplot(2, 1, 1)
|
| 152 |
+
plt.plot(t.numpy(), carrier_wave.numpy(), label="Carrier Wave", color="blue")
|
| 153 |
+
plt.title("Carrier Wave")
|
| 154 |
+
plt.xlabel("Time (s)")
|
| 155 |
+
plt.ylabel("Amplitude")
|
| 156 |
+
plt.grid(True)
|
| 157 |
+
|
| 158 |
+
# Plot the modulated wave
|
| 159 |
+
plt.subplot(2, 1, 2)
|
| 160 |
+
plt.plot(t.numpy(), modulated_wave.numpy(), label="Modulated Wave", color="orange")
|
| 161 |
+
plt.title("Modulated Wave (Encrypted Message)")
|
| 162 |
+
plt.xlabel("Time (s)")
|
| 163 |
+
plt.ylabel("Amplitude")
|
| 164 |
+
plt.grid(True)
|
| 165 |
+
|
| 166 |
+
# Show plots
|
| 167 |
+
plt.tight_layout()
|
| 168 |
+
plt.show()
|
| 169 |
+
|
| 170 |
+
# Example usage
|
| 171 |
+
if __name__ == "__main__":
|
| 172 |
+
# Initial settings
|
| 173 |
+
message = "Transfer 1000 units"
|
| 174 |
+
key = b'\x01' * 32 # AES-256 key
|
| 175 |
+
frequency = 5.0 # Frequency in Hz
|
| 176 |
+
sample_rate = 100 # Samples per second
|
| 177 |
+
duration = 1.0 # Wave duration in seconds
|
| 178 |
+
|
| 179 |
+
# Step 1: Create dense wave
|
| 180 |
+
t, carrier_wave, modulated_wave = generate_dense_wave(message, frequency, sample_rate, duration)
|
| 181 |
+
|
| 182 |
+
# Step 2: Encrypt the message
|
| 183 |
+
encrypted_message = encrypt_message(message, key)
|
| 184 |
+
|
| 185 |
+
# Step 3: Modulate the wave with encrypted message
|
| 186 |
+
modulated_wave_with_encryption = modulate_wave_with_encryption(modulated_wave, encrypted_message)
|
| 187 |
+
|
| 188 |
+
# Step 4: Visualize the modulation
|
| 189 |
+
visualize_modulation(t, carrier_wave, modulated_wave_with_encryption)
|
| 190 |
+
|
| 191 |
+
import torch
|
| 192 |
+
import numpy as np
|
| 193 |
+
import time
|
| 194 |
+
import base64
|
| 195 |
+
import matplotlib.pyplot as plt
|
| 196 |
+
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
|
| 197 |
+
from cryptography.hazmat.backends import default_backend
|
| 198 |
+
from cryptography.hazmat.primitives import padding
|
| 199 |
+
|
| 200 |
+
# Step 1: Generate the dense wave (sinusoidal waveform modulated by message data)
|
| 201 |
+
def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float):
|
| 202 |
+
t = torch.linspace(0, duration, int(sample_rate * duration))
|
| 203 |
+
# Convert message to numerical values (simple encoding)
|
| 204 |
+
message_bytes = [ord(c) for c in message]
|
| 205 |
+
message_tensor = torch.tensor(message_bytes, dtype=torch.float32)
|
| 206 |
+
# Create a carrier wave (sine wave)
|
| 207 |
+
carrier_wave = torch.sin(2 * np.pi * frequency * t)
|
| 208 |
+
# Modulate the carrier wave with the message tensor
|
| 209 |
+
modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t)
|
| 210 |
+
return t, carrier_wave, modulated_wave
|
| 211 |
+
|
| 212 |
+
# Step 2: Encrypt the message (VPN layer encryption)
|
| 213 |
+
def encrypt_message(message: str, key: bytes):
|
| 214 |
+
backend = default_backend()
|
| 215 |
+
iv = b'\x00' * 16 # Initialization vector (in a real system, use a secure IV)
|
| 216 |
+
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)
|
| 217 |
+
encryptor = cipher.encryptor()
|
| 218 |
+
|
| 219 |
+
# Pad the message to be AES block-size compliant
|
| 220 |
+
padder = padding.PKCS7(algorithms.AES.block_size).padder()
|
| 221 |
+
padded_data = padder.update(message.encode()) + padder.finalize()
|
| 222 |
+
|
| 223 |
+
encrypted_message = encryptor.update(padded_data) + encryptor.finalize()
|
| 224 |
+
return encrypted_message
|
| 225 |
+
|
| 226 |
+
# Step 3: Simulate VPN layer transmission with encryption
|
| 227 |
+
def vpn_layer_transmission(data: bytes):
|
| 228 |
+
# Simulate the "VPN" by encrypting the message
|
| 229 |
+
print("[VPN] Transmitting data securely...")
|
| 230 |
+
time.sleep(1) # Simulating network delay
|
| 231 |
+
encoded_data = base64.b64encode(data)
|
| 232 |
+
print(f"[VPN] Encrypted and transmitted data: {encoded_data.decode('utf-8')}")
|
| 233 |
+
return encoded_data
|
| 234 |
+
|
| 235 |
+
# Step 4: Simulate cloud storage transfer and deep space transmission
|
| 236 |
+
def cloud_transfer(encoded_data: bytes):
|
| 237 |
+
print("[Cloud] Storing data in cloud for deep space transmission...")
|
| 238 |
+
time.sleep(2) # Simulating storage delay
|
| 239 |
+
print(f"[Cloud] Data successfully stored: {encoded_data.decode('utf-8')}")
|
| 240 |
+
|
| 241 |
+
# Step 5: Visualization using Matplotlib
|
| 242 |
+
def visualize_modulation(t, carrier_wave, modulated_wave):
|
| 243 |
+
plt.figure(figsize=(12, 6))
|
| 244 |
+
|
| 245 |
+
# Plot the original carrier wave
|
| 246 |
+
plt.subplot(2, 1, 1)
|
| 247 |
+
plt.plot(t.numpy(), carrier_wave.numpy(), label="Carrier Wave", color="blue")
|
| 248 |
+
plt.title("Carrier Wave")
|
| 249 |
+
plt.xlabel("Time (s)")
|
| 250 |
+
plt.ylabel("Amplitude")
|
| 251 |
+
plt.grid(True)
|
| 252 |
+
|
| 253 |
+
# Plot the modulated wave
|
| 254 |
+
plt.subplot(2, 1, 2)
|
| 255 |
+
plt.plot(t.numpy(), modulated_wave.numpy(), label="Modulated Wave", color="orange")
|
| 256 |
+
plt.title("Modulated Wave (Encrypted Message)")
|
| 257 |
+
plt.xlabel("Time (s)")
|
| 258 |
+
plt.ylabel("Amplitude")
|
| 259 |
+
plt.grid(True)
|
| 260 |
+
|
| 261 |
+
# Show plots
|
| 262 |
+
plt.tight_layout()
|
| 263 |
+
plt.show()
|
| 264 |
+
|
| 265 |
+
# Example usage
|
| 266 |
+
if __name__ == "__main__":
|
| 267 |
+
# Initial settings
|
| 268 |
+
message = "Transfer 1000 units"
|
| 269 |
+
key = b'\x01' * 32 # AES-256 key
|
| 270 |
+
frequency = 5.0 # Frequency in Hz
|
| 271 |
+
sample_rate = 100 # Samples per second
|
| 272 |
+
duration = 1.0 # Wave duration in seconds
|
| 273 |
+
|
| 274 |
+
# Step 1: Create dense wave
|
| 275 |
+
t, carrier_wave, modulated_wave = generate_dense_wave(message, frequency, sample_rate, duration)
|
| 276 |
+
|
| 277 |
+
# Step 2: Encrypt the message
|
| 278 |
+
encrypted_message = encrypt_message(message, key)
|
| 279 |
+
|
| 280 |
+
# Step 3: VPN Layer Transmission (simulate VPN secure transmission)
|
| 281 |
+
vpn_encrypted_message = vpn_layer_transmission(encrypted_message)
|
| 282 |
+
|
| 283 |
+
# Step 4: Cloud transfer and simulated "deep space" transmission
|
| 284 |
+
cloud_transfer(vpn_encrypted_message)
|
| 285 |
+
|
| 286 |
+
# Step 5: Visualize the wave modulation
|
| 287 |
+
visualize_modulation(t, carrier_wave, modulated_wave)
|
| 288 |
+
|
| 289 |
+
import torch
|
| 290 |
+
import numpy as np
|
| 291 |
+
import time
|
| 292 |
+
import base64
|
| 293 |
+
import matplotlib.pyplot as plt
|
| 294 |
+
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
|
| 295 |
+
from cryptography.hazmat.backends import default_backend
|
| 296 |
+
from cryptography.hazmat.primitives import padding
|
| 297 |
+
|
| 298 |
+
# Step 1: Generate the dense wave (sinusoidal waveform modulated by message data)
|
| 299 |
+
def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float):
|
| 300 |
+
t = torch.linspace(0, duration, int(sample_rate * duration))
|
| 301 |
+
# Convert message to numerical values (simple encoding)
|
| 302 |
+
message_bytes = [ord(c) for c in message]
|
| 303 |
+
message_tensor = torch.tensor(message_bytes, dtype=torch.float32)
|
| 304 |
+
# Create a carrier wave (sine wave)
|
| 305 |
+
carrier_wave = torch.sin(2 * np.pi * frequency * t)
|
| 306 |
+
# Modulate the carrier wave with the message tensor
|
| 307 |
+
modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t)
|
| 308 |
+
return t, carrier_wave, modulated_wave
|
| 309 |
+
|
| 310 |
+
# Step 2: Combine the waves (carrier wave + modulated wave)
|
| 311 |
+
def combine_waves(carrier_wave: torch.Tensor, modulated_wave: torch.Tensor):
|
| 312 |
+
combined_wave = carrier_wave + modulated_wave # Simple addition
|
| 313 |
+
return combined_wave
|
| 314 |
+
|
| 315 |
+
# Step 3: Encrypt the message (VPN layer encryption)
|
| 316 |
+
def encrypt_message(message: str, key: bytes):
|
| 317 |
+
backend = default_backend()
|
| 318 |
+
iv = b'\x00' * 16 # Initialization vector (in a real system, use a secure IV)
|
| 319 |
+
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)
|
| 320 |
+
encryptor = cipher.encryptor()
|
| 321 |
+
|
| 322 |
+
# Pad the message to be AES block-size compliant
|
| 323 |
+
padder = padding.PKCS7(algorithms.AES.block_size).padder()
|
| 324 |
+
padded_data = padder.update(message.encode()) + padder.finalize()
|
| 325 |
+
|
| 326 |
+
encrypted_message = encryptor.update(padded_data) + encryptor.finalize()
|
| 327 |
+
return encrypted_message
|
| 328 |
+
|
| 329 |
+
# Step 4: Simulate VPN layer transmission with encryption
|
| 330 |
+
def vpn_layer_transmission(data: bytes):
|
| 331 |
+
# Simulate the "VPN" by encrypting the message
|
| 332 |
+
print("[VPN] Transmitting data securely...")
|
| 333 |
+
time.sleep(1) # Simulating network delay
|
| 334 |
+
encoded_data = base64.b64encode(data)
|
| 335 |
+
print(f"[VPN] Encrypted and transmitted data: {encoded_data.decode('utf-8')}")
|
| 336 |
+
return encoded_data
|
| 337 |
+
|
| 338 |
+
# Step 5: Simulate cloud storage transfer and deep space transmission
|
| 339 |
+
def cloud_transfer(encoded_data: bytes):
|
| 340 |
+
print("[Cloud] Storing data in cloud for deep space transmission...")
|
| 341 |
+
time.sleep(2) # Simulating storage delay
|
| 342 |
+
print(f"[Cloud] Data successfully stored: {encoded_data.decode('utf-8')}")
|
| 343 |
+
|
| 344 |
+
# Step 6: Visualization using Matplotlib
|
| 345 |
+
def visualize_modulation(t, carrier_wave, modulated_wave, combined_wave):
|
| 346 |
+
plt.figure(figsize=(12, 8))
|
| 347 |
+
|
| 348 |
+
# Plot the original carrier wave
|
| 349 |
+
plt.subplot(3, 1, 1)
|
| 350 |
+
plt.plot(t.numpy(), carrier_wave.numpy(), label="Carrier Wave", color="blue")
|
| 351 |
+
plt.title("Carrier Wave")
|
| 352 |
+
plt.xlabel("Time (s)")
|
| 353 |
+
plt.ylabel("Amplitude")
|
| 354 |
+
plt.grid(True)
|
| 355 |
+
|
| 356 |
+
# Plot the modulated wave
|
| 357 |
+
plt.subplot(3, 1, 2)
|
| 358 |
+
plt.plot(t.numpy(), modulated_wave.numpy(), label="Modulated Wave", color="orange")
|
| 359 |
+
plt.title("Modulated Wave (Encrypted Message)")
|
| 360 |
+
plt.xlabel("Time (s)")
|
| 361 |
+
plt.ylabel("Amplitude")
|
| 362 |
+
plt.grid(True)
|
| 363 |
+
|
| 364 |
+
# Plot the combined wave
|
| 365 |
+
plt.subplot(3, 1, 3)
|
| 366 |
+
plt.plot(t.numpy(), combined_wave.numpy(), label="Combined Wave", color="green")
|
| 367 |
+
plt.title("Combined Wave (Carrier + Modulated)")
|
| 368 |
+
plt.xlabel("Time (s)")
|
| 369 |
+
plt.ylabel("Amplitude")
|
| 370 |
+
plt.grid(True)
|
| 371 |
+
|
| 372 |
+
# Show plots
|
| 373 |
+
plt.tight_layout()
|
| 374 |
+
plt.show()
|
| 375 |
+
|
| 376 |
+
# Example usage
|
| 377 |
+
if __name__ == "__main__":
|
| 378 |
+
# Initial settings
|
| 379 |
+
message = "Transfer 1000 units"
|
| 380 |
+
key = b'\x01' * 32 # AES-256 key
|
| 381 |
+
frequency = 5.0 # Frequency in Hz
|
| 382 |
+
sample_rate = 100 # Samples per second
|
| 383 |
+
duration = 1.0 # Wave duration in seconds
|
| 384 |
+
|
| 385 |
+
# Step 1: Create dense wave
|
| 386 |
+
t, carrier_wave, modulated_wave = generate_dense_wave(message, frequency, sample_rate, duration)
|
| 387 |
+
|
| 388 |
+
# Step 2: Combine the carrier and modulated waves
|
| 389 |
+
combined_wave = combine_waves(carrier_wave, modulated_wave)
|
| 390 |
+
|
| 391 |
+
# Step 3: Encrypt the message
|
| 392 |
+
encrypted_message = encrypt_message(message, key)
|
| 393 |
+
|
| 394 |
+
# Step 4: VPN Layer Transmission (simulate VPN secure transmission)
|
| 395 |
+
vpn_encrypted_message = vpn_layer_transmission(encrypted_message)
|
| 396 |
+
|
| 397 |
+
# Step 5: Cloud transfer and simulated "deep space" transmission
|
| 398 |
+
cloud_transfer(vpn_encrypted_message)
|
| 399 |
+
|
| 400 |
+
# Step 6: Visualize the wave modulation and combined wave
|
| 401 |
+
visualize_modulation(t, carrier_wave, modulated_wave, combined_wave)
|
| 402 |
+
|
| 403 |
+
import numpy as np
|
| 404 |
+
|
| 405 |
+
# Hamming(7, 4) code for simple error detection and correction
|
| 406 |
+
def hamming_encode(message: str):
|
| 407 |
+
message_bits = [int(b) for b in ''.join(format(ord(c), '08b') for c in message)]
|
| 408 |
+
encoded_bits = []
|
| 409 |
+
|
| 410 |
+
# Apply Hamming(7,4) encoding
|
| 411 |
+
for i in range(0, len(message_bits), 4):
|
| 412 |
+
d = message_bits[i:i+4]
|
| 413 |
+
if len(d) < 4: # Pad if necessary
|
| 414 |
+
d += [0] * (4 - len(d))
|
| 415 |
+
|
| 416 |
+
p1 = d[0] ^ d[1] ^ d[3] # Parity bits
|
| 417 |
+
p2 = d[0] ^ d[2] ^ d[3]
|
| 418 |
+
p3 = d[1] ^ d[2] ^ d[3]
|
| 419 |
+
|
| 420 |
+
# Add data and parity bits
|
| 421 |
+
encoded_bits += [p1, p2, d[0], p3, d[1], d[2], d[3]]
|
| 422 |
+
|
| 423 |
+
return np.array(encoded_bits)
|
| 424 |
+
|
| 425 |
+
def hamming_decode(encoded_bits):
|
| 426 |
+
decoded_message = []
|
| 427 |
+
|
| 428 |
+
# Decode Hamming(7,4)
|
| 429 |
+
for i in range(0, len(encoded_bits), 7):
|
| 430 |
+
b = encoded_bits[i:i+7]
|
| 431 |
+
if len(b) < 7: # Skip if not enough bits
|
| 432 |
+
continue
|
| 433 |
+
|
| 434 |
+
# Calculate syndrome bits
|
| 435 |
+
p1 = b[0] ^ b[2] ^ b[4] ^ b[6]
|
| 436 |
+
p2 = b[1] ^ b[2] ^ b[5] ^ b[6]
|
| 437 |
+
p3 = b[3] ^ b[4] ^ b[5] ^ b[6]
|
| 438 |
+
|
| 439 |
+
# Error position (if any)
|
| 440 |
+
error_position = p1 + (p2 * 2) + (p3 * 4)
|
| 441 |
+
|
| 442 |
+
if error_position != 0:
|
| 443 |
+
b[error_position - 1] = 1 - b[error_position - 1] # Correct the bit
|
| 444 |
+
|
| 445 |
+
# Extract the original data bits
|
| 446 |
+
decoded_message += [b[2], b[4], b[5], b[6]]
|
| 447 |
+
|
| 448 |
+
return ''.join([chr(int(''.join(map(str, decoded_message[i:i+8])), 2)) for i in range(0, len(decoded_message), 8)])
|
| 449 |
+
|
| 450 |
+
# Example usage
|
| 451 |
+
message = "Test"
|
| 452 |
+
encoded_message = hamming_encode(message)
|
| 453 |
+
print(f"Encoded Message (Hamming): {encoded_message}")
|
| 454 |
+
|
| 455 |
+
# Simulate transmission and potential bit-flips (errors)
|
| 456 |
+
encoded_message[2] = 1 - encoded_message[2] # Introduce an error
|
| 457 |
+
|
| 458 |
+
# Decode and correct errors
|
| 459 |
+
decoded_message = hamming_decode(encoded_message)
|
| 460 |
+
print(f"Decoded Message: {decoded_message}")
|
| 461 |
+
|
| 462 |
+
import torch
|
| 463 |
+
import numpy as np
|
| 464 |
+
import matplotlib.pyplot as plt
|
| 465 |
+
|
| 466 |
+
# Step 1: Generate the dense wave (sinusoidal waveform modulated by message data)
|
| 467 |
+
def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float):
|
| 468 |
+
t = torch.linspace(0, duration, int(sample_rate * duration))
|
| 469 |
+
message_bytes = [ord(c) for c in message]
|
| 470 |
+
message_tensor = torch.tensor(message_bytes, dtype=torch.float32)
|
| 471 |
+
carrier_wave = torch.sin(2 * np.pi * frequency * t)
|
| 472 |
+
modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t)
|
| 473 |
+
return t, carrier_wave, modulated_wave
|
| 474 |
+
|
| 475 |
+
# Step 2: Space-Time Coding (Alamouti Scheme with 2 antennas)
|
| 476 |
+
def space_time_code(wave1: torch.Tensor, wave2: torch.Tensor):
|
| 477 |
+
# Alamouti Space-Time Block Code for 2 antennas
|
| 478 |
+
s1 = wave1
|
| 479 |
+
s2 = wave2
|
| 480 |
+
transmit_antenna_1 = torch.stack([s1, -s2.conj()])
|
| 481 |
+
transmit_antenna_2 = torch.stack([s2, s1.conj()])
|
| 482 |
+
return transmit_antenna_1, transmit_antenna_2
|
| 483 |
+
|
| 484 |
+
# Step 3: Doppler Compensation
|
| 485 |
+
def doppler_compensation(wave: torch.Tensor, velocity: float, frequency: float, sample_rate: int):
|
| 486 |
+
c = 3e8 # Speed of light in meters per second
|
| 487 |
+
doppler_shift = frequency * (velocity / c) # Doppler shift formula
|
| 488 |
+
compensated_wave = wave * torch.exp(-1j * 2 * np.pi * doppler_shift * torch.arange(len(wave)) / sample_rate)
|
| 489 |
+
return compensated_wave.real # Take real part after compensation
|
| 490 |
+
|
| 491 |
+
# Step 4: Combine Waves (Carrier + Modulated)
|
| 492 |
+
def combine_waves(carrier_wave: torch.Tensor, modulated_wave: torch.Tensor):
|
| 493 |
+
combined_wave = carrier_wave + modulated_wave
|
| 494 |
+
return combined_wave
|
| 495 |
+
|
| 496 |
+
# Step 5: Visualization using Matplotlib
|
| 497 |
+
def visualize_modulation(t, wave1, wave2, combined_wave, title1, title2, combined_title):
|
| 498 |
+
plt.figure(figsize=(12, 8))
|
| 499 |
+
|
| 500 |
+
# Plot Wave 1
|
| 501 |
+
plt.subplot(3, 1, 1)
|
| 502 |
+
plt.plot(t.numpy(), wave1.numpy(), label=title1, color="blue")
|
| 503 |
+
plt.title(title1)
|
| 504 |
+
plt.xlabel("Time (s)")
|
| 505 |
+
plt.ylabel("Amplitude")
|
| 506 |
+
plt.grid(True)
|
| 507 |
+
|
| 508 |
+
# Plot Wave 2
|
| 509 |
+
plt.subplot(3, 1, 2)
|
| 510 |
+
plt.plot(t.numpy(), wave2.numpy(), label=title2, color="orange")
|
| 511 |
+
plt.title(title2)
|
| 512 |
+
plt.xlabel("Time (s)")
|
| 513 |
+
plt.ylabel("Amplitude")
|
| 514 |
+
plt.grid(True)
|
| 515 |
+
|
| 516 |
+
# Plot Combined Wave
|
| 517 |
+
plt.subplot(3, 1, 3)
|
| 518 |
+
plt.plot(t.numpy(), combined_wave.numpy(), label=combined_title, color="green")
|
| 519 |
+
plt.title(combined_title)
|
| 520 |
+
plt.xlabel("Time (s)")
|
| 521 |
+
plt.ylabel("Amplitude")
|
| 522 |
+
plt.grid(True)
|
| 523 |
+
|
| 524 |
+
plt.tight_layout()
|
| 525 |
+
plt.show()
|
| 526 |
+
|
| 527 |
+
# Example usage
|
| 528 |
+
if __name__ == "__main__":
|
| 529 |
+
# Initial settings
|
| 530 |
+
message = "Deep Space Message"
|
| 531 |
+
frequency = 5.0 # Frequency in Hz
|
| 532 |
+
sample_rate = 100 # Samples per second
|
| 533 |
+
duration = 1.0 # Wave duration in seconds
|
| 534 |
+
velocity = 10000 # Relative velocity (m/s) for Doppler compensation
|
| 535 |
+
|
| 536 |
+
# Step 1: Generate dense wave
|
| 537 |
+
t, carrier_wave, modulated_wave = generate_dense_wave(message, frequency, sample_rate, duration)
|
| 538 |
+
|
| 539 |
+
# Step 2: Space-Time Coding (using two antennas)
|
| 540 |
+
st_wave1, st_wave2 = space_time_code(carrier_wave, modulated_wave)
|
| 541 |
+
|
| 542 |
+
# Step 3: Doppler Compensation
|
| 543 |
+
doppler_wave1 = doppler_compensation(st_wave1[0], velocity, frequency, sample_rate)
|
| 544 |
+
doppler_wave2 = doppler_compensation(st_wave2[0], velocity, frequency, sample_rate)
|
| 545 |
+
|
| 546 |
+
# Step 4: Combine the waves (carrier + modulated)
|
| 547 |
+
combined_wave = combine_waves(doppler_wave1, doppler_wave2)
|
| 548 |
+
|
| 549 |
+
# Step 5: Visualization
|
| 550 |
+
visualize_modulation(t, doppler_wave1, doppler_wave2, combined_wave,
|
| 551 |
+
"Doppler-Compensated Wave 1", "Doppler-Compensated Wave 2",
|
| 552 |
+
"Combined Doppler-Compensated Wave")
|