Upload _211.py
Browse files
_211.py
ADDED
|
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
""".211
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1uZZV_SkJj2tua-CdVEbGu85Tl8vrTbWD
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import numpy as np
|
| 11 |
+
import pandas as pd
|
| 12 |
+
|
| 13 |
+
import os
|
| 14 |
+
for dirname, _, filenames in os.walk('/kaggle/input'):
|
| 15 |
+
for filename in filenames:
|
| 16 |
+
print(os.path.join(dirname, filename))
|
| 17 |
+
|
| 18 |
+
import pandas as pd
|
| 19 |
+
import numpy as np
|
| 20 |
+
import matplotlib.pyplot as plt
|
| 21 |
+
import seaborn as sns
|
| 22 |
+
|
| 23 |
+
data = pd.read_csv('/content/synthetic_ecommerce_data.csv')
|
| 24 |
+
|
| 25 |
+
print("Dataset Preview:")
|
| 26 |
+
print(data.head())
|
| 27 |
+
|
| 28 |
+
print("\nDescriptive Statistics:")
|
| 29 |
+
print(data.describe(include='all'))
|
| 30 |
+
|
| 31 |
+
print("\nMissing Values:")
|
| 32 |
+
print(data.isnull().sum())
|
| 33 |
+
|
| 34 |
+
data['Transaction_Date'] = pd.to_datetime(data['Transaction_Date'])
|
| 35 |
+
daily_revenue = data.groupby('Transaction_Date')['Revenue'].sum()
|
| 36 |
+
|
| 37 |
+
plt.figure(figsize=(10, 5))
|
| 38 |
+
plt.plot(daily_revenue, label='Daily Revenue')
|
| 39 |
+
plt.title('Revenue Over Time')
|
| 40 |
+
plt.xlabel('Date')
|
| 41 |
+
plt.ylabel('Revenue')
|
| 42 |
+
plt.legend()
|
| 43 |
+
plt.show()
|
| 44 |
+
|
| 45 |
+
top_products = data.groupby('Product_ID')['Revenue'].sum().sort_values(ascending=False).head(10)
|
| 46 |
+
|
| 47 |
+
plt.figure(figsize=(10, 5))
|
| 48 |
+
top_products.plot(kind='bar')
|
| 49 |
+
plt.title('Top 10 Products by Revenue')
|
| 50 |
+
plt.xlabel('Product Id')
|
| 51 |
+
plt.show()
|
| 52 |
+
|
| 53 |
+
category_revenue = data.groupby('Category')['Revenue'].sum()
|
| 54 |
+
|
| 55 |
+
plt.figure(figsize=(10, 5))
|
| 56 |
+
sns.scatterplot(x=data=['Ad_Spend'], y=data['Revenue'])
|
| 57 |
+
plt.title('Ad Spend vs Revenue')
|
| 58 |
+
plt.xlabel('Ad Spend')
|
| 59 |
+
plt.ylabel('Revenue')
|
| 60 |
+
plt.show()
|
| 61 |
+
|
| 62 |
+
plt.figure(figsize=(10, 5))
|
| 63 |
+
sns.histplot(data['Ad_CTR'], bins=20, kde=True)
|
| 64 |
+
plt.title('Distribution of Ad Click-Through Rate (CTR)')
|
| 65 |
+
plt.xlabel('CTR')
|
| 66 |
+
plt.ylabel('Frequency')
|
| 67 |
+
plt.show()
|
| 68 |
+
|
| 69 |
+
region_revenue = data.groupby('Region')['Revenue'].sum()
|
| 70 |
+
|
| 71 |
+
plt.figure(figsize=(10, 5))
|
| 72 |
+
region_revenue.plot(kind='bar')
|
| 73 |
+
plt.title('Revenue by Region')
|
| 74 |
+
plt.xlabel('Region')
|
| 75 |
+
plt.ylabel('Revenue')
|
| 76 |
+
plt.show()
|
| 77 |
+
|
| 78 |
+
data['Month'] = data['Transaction_Date'].dt.month
|
| 79 |
+
monthly_revenue = data.groupby('Month')['Revenue'].sum()
|
| 80 |
+
|
| 81 |
+
plt.figure(figsize=(10, 5))
|
| 82 |
+
monthly_revenue.plot(kind='bar')
|
| 83 |
+
plt.title('Monthly Reveneu Trend')
|
| 84 |
+
plt.xlabel('Month')
|
| 85 |
+
plt.ylabel('Revenue')
|
| 86 |
+
plt.show()
|
| 87 |
+
|
| 88 |
+
plt.figure(figsize=(10, 5))
|
| 89 |
+
sns.scatterplot(x=data['Discount_Applied'], y=data['Revenue'])
|
| 90 |
+
plt.title('Discount Applied vs Revenue')
|
| 91 |
+
plt.xlabel('Discount (%)')
|
| 92 |
+
plt.ylabel('Revenue')
|
| 93 |
+
plt.show()
|
| 94 |
+
|
| 95 |
+
plt.figure(figsize=(10, 5))
|
| 96 |
+
sns.scatterplot(x=data['Clicks'], y=data['Revenue'])
|
| 97 |
+
plt.title('Clicks vs Revenue')
|
| 98 |
+
plt.ylabel('Revenue')
|
| 99 |
+
plt.show()
|
| 100 |
+
|
| 101 |
+
plt.figure(figsize=(10, 5))
|
| 102 |
+
sns.histplot(data['Conversion_Rate'], bins=20, kde=True)
|
| 103 |
+
plt.title('Distribution of Conversion Rate')
|
| 104 |
+
plt.xlabel('Conversion Rate')
|
| 105 |
+
plt.ylabel('Frequency')
|
| 106 |
+
plt.show()
|
| 107 |
+
|
| 108 |
+
plt.figure(figsize=(10, 5))
|
| 109 |
+
sns.scatterplot(x=data['Conversion_Rate'], y=data['Revenue'])
|
| 110 |
+
plt.title('Conversion Rate vs Revenue')
|
| 111 |
+
plt.xlabel('Conversion Rate')
|
| 112 |
+
plt.ylabel('Revenue')
|
| 113 |
+
plt.show()
|
| 114 |
+
|
| 115 |
+
region_revenue = data.groupby('Region')['Revenue'].sum()
|
| 116 |
+
total_revenue = region_revenue.sum()
|
| 117 |
+
region_contribution = (region_revenue / total_revenue) * 100
|
| 118 |
+
|
| 119 |
+
plt.figure(figsize=(10, 5))
|
| 120 |
+
region_contribution.plot(kind='bar')
|
| 121 |
+
plt.title('Revenue Contribution by Reigion (%)')
|
| 122 |
+
plt.xlabel('Region')
|
| 123 |
+
plt.ylabel('Revenue Contribution (%)')
|
| 124 |
+
plt.show()
|
| 125 |
+
|
| 126 |
+
data['Ad_Efficiency'] = data['Revenue'] / data['Ad_Spend']
|
| 127 |
+
plt.figure(figsize=(10, 5))
|
| 128 |
+
sns.boxplot(data=data, x='Category', y='Ad_Efficiency')
|
| 129 |
+
plt.title('Ad Spend Efficiency by Category')
|
| 130 |
+
plt.xlabel('Category')
|
| 131 |
+
plt.ylabel('Revenue per Unit of Ad Spend')
|
| 132 |
+
plt.show()
|
| 133 |
+
|
| 134 |
+
plt.figure(figsize=(10, 5))
|
| 135 |
+
sns.histplot(data['Units_Sold'], bins=20, kde=True)
|
| 136 |
+
plt.title('Distribution of Units Sold')
|
| 137 |
+
plt.xlabel('Units Sold')
|
| 138 |
+
plt.ylabel('Frequency')
|
| 139 |
+
plt.show()
|
| 140 |
+
|
| 141 |
+
plt.figure(figsize=(10, 5))
|
| 142 |
+
sns.scatterplot(x=data['Units_Sold'], y=data['Revenue'])
|
| 143 |
+
plt.title('Units Sold vs Revenue')
|
| 144 |
+
plt.xlabel('Units Sold')
|
| 145 |
+
plt.ylabel('Revenue')
|
| 146 |
+
plt.show()
|
| 147 |
+
|
| 148 |
+
units_by_category = data.groupby('Category')['Units_Sold'].sum()
|
| 149 |
+
|
| 150 |
+
plt.figure(figsize=(10, 5))
|
| 151 |
+
units_by_category.plot(kind='bar')
|
| 152 |
+
plt.title('Units Sold by Category')
|
| 153 |
+
plt.xlabel('Category')
|
| 154 |
+
plt.ylabel('Units Sold')
|
| 155 |
+
plt.show()
|
| 156 |
+
|
| 157 |
+
data['Revenue_per_Impression'] = data['Revenue'] / data ['Impressions'].astype(float)
|
| 158 |
+
plt.figure(figsize=(10, 5))
|
| 159 |
+
sns.boxplot(data=data, x='Category', y='Revenue_per_Impression')
|
| 160 |
+
plt.title('Revenue per Impression by Category')
|
| 161 |
+
plt.xlabel('Category')
|
| 162 |
+
plt.ylabel('Revenue per Impression')
|
| 163 |
+
plt.show()
|