Upload atmosecure.py
Browse files- atmosecure.py +267 -0
atmosecure.py
ADDED
|
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""Atmosecure
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1se4gbirQOBqRsx5WRQjtWBT8mqW0457o
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
import torch.nn as nn
|
| 12 |
+
import numpy as np
|
| 13 |
+
import matplotlib.pyplot as plt
|
| 14 |
+
|
| 15 |
+
# Define a neural network to simulate signal transmission through nerves
|
| 16 |
+
class WealthSignalNerveNet(nn.Module):
|
| 17 |
+
def __init__(self, input_size=1, hidden_size=64, output_size=1):
|
| 18 |
+
super(WealthSignalNerveNet, self).__init__()
|
| 19 |
+
# Simulating the nerve layers (hidden layers)
|
| 20 |
+
self.fc1 = nn.Linear(input_size, hidden_size)
|
| 21 |
+
self.fc2 = nn.Linear(hidden_size, hidden_size)
|
| 22 |
+
self.fc3 = nn.Linear(hidden_size, output_size)
|
| 23 |
+
self.relu = nn.ReLU() # Activation to simulate signal flow
|
| 24 |
+
|
| 25 |
+
def forward(self, x):
|
| 26 |
+
x = self.relu(self.fc1(x)) # First layer simulating the first nerve
|
| 27 |
+
x = self.relu(self.fc2(x)) # Second nerve layer
|
| 28 |
+
x = self.fc3(x) # Final output layer representing the output of the signal through the nerves
|
| 29 |
+
return x
|
| 30 |
+
|
| 31 |
+
# Function to generate wealth signals using a sine wave
|
| 32 |
+
def generate_wealth_signal(iterations=100):
|
| 33 |
+
time = np.linspace(0, 10, iterations)
|
| 34 |
+
wealth_signal = np.sin(2 * np.pi * time) # Simple sine wave representing wealth
|
| 35 |
+
return wealth_signal
|
| 36 |
+
|
| 37 |
+
# Function to transmit wealth signal through the nerve network
|
| 38 |
+
def transmit_wealth_signal(wealth_signal, model):
|
| 39 |
+
transmitted_signals = []
|
| 40 |
+
for wealth in wealth_signal:
|
| 41 |
+
wealth_tensor = torch.tensor([wealth], dtype=torch.float32) # Convert wealth signal to tensor
|
| 42 |
+
transmitted_signal = model(wealth_tensor) # Pass through nerve model
|
| 43 |
+
transmitted_signals.append(transmitted_signal.item())
|
| 44 |
+
return transmitted_signals
|
| 45 |
+
|
| 46 |
+
# Function to visualize the wealth signal transmission
|
| 47 |
+
def plot_wealth_signal(original_signal, transmitted_signal):
|
| 48 |
+
plt.figure(figsize=(10, 5))
|
| 49 |
+
plt.plot(original_signal, label="Original Wealth Signal", color='g', linestyle='--')
|
| 50 |
+
plt.plot(transmitted_signal, label="Transmitted Wealth Signal", color='b')
|
| 51 |
+
plt.title("Wealth Signal Transmission Through Nerves")
|
| 52 |
+
plt.xlabel("Iterations (Time)")
|
| 53 |
+
plt.ylabel("Signal Amplitude")
|
| 54 |
+
plt.legend()
|
| 55 |
+
plt.grid(True)
|
| 56 |
+
plt.show()
|
| 57 |
+
|
| 58 |
+
# Initialize the neural network simulating the nerves
|
| 59 |
+
model = WealthSignalNerveNet()
|
| 60 |
+
|
| 61 |
+
# Generate a wealth signal
|
| 62 |
+
iterations = 100
|
| 63 |
+
wealth_signal = generate_wealth_signal(iterations)
|
| 64 |
+
|
| 65 |
+
# Transmit the wealth signal through the nerve model
|
| 66 |
+
transmitted_signal = transmit_wealth_signal(wealth_signal, model)
|
| 67 |
+
|
| 68 |
+
# Visualize the original and transmitted wealth signals
|
| 69 |
+
plot_wealth_signal(wealth_signal, transmitted_signal)
|
| 70 |
+
|
| 71 |
+
import torch
|
| 72 |
+
import torch.nn as nn
|
| 73 |
+
import numpy as np
|
| 74 |
+
import matplotlib.pyplot as plt
|
| 75 |
+
|
| 76 |
+
# Define a neural network to simulate signal transmission and storage
|
| 77 |
+
class WealthSignalStorageNet(nn.Module):
|
| 78 |
+
def __init__(self, input_size=1, hidden_size=64, output_size=1):
|
| 79 |
+
super(WealthSignalStorageNet, self).__init__()
|
| 80 |
+
# Layers for transmitting and storing the signal
|
| 81 |
+
self.fc1 = nn.Linear(input_size, hidden_size)
|
| 82 |
+
self.fc2 = nn.Linear(hidden_size, hidden_size)
|
| 83 |
+
self.fc3 = nn.Linear(hidden_size, output_size)
|
| 84 |
+
self.fc4 = nn.Linear(output_size, output_size) # Additional layer for positive energy transformation
|
| 85 |
+
self.relu = nn.ReLU()
|
| 86 |
+
self.sigmoid = nn.Sigmoid() # Sigmoid to ensure positive energy output
|
| 87 |
+
|
| 88 |
+
def forward(self, x):
|
| 89 |
+
x = self.relu(self.fc1(x))
|
| 90 |
+
x = self.relu(self.fc2(x))
|
| 91 |
+
x = self.fc3(x)
|
| 92 |
+
x = self.fc4(x) # Store signal and transform
|
| 93 |
+
x = self.sigmoid(x) # Convert to positive energy
|
| 94 |
+
return x
|
| 95 |
+
|
| 96 |
+
# Function to generate wealth signals using a sine wave
|
| 97 |
+
def generate_wealth_signal(iterations=100):
|
| 98 |
+
time = np.linspace(0, 10, iterations)
|
| 99 |
+
wealth_signal = np.sin(2 * np.pi * time) # Simple sine wave representing wealth
|
| 100 |
+
return wealth_signal
|
| 101 |
+
|
| 102 |
+
# Function to transmit and transform wealth signal through the network
|
| 103 |
+
def process_wealth_signal(wealth_signal, model):
|
| 104 |
+
processed_signals = []
|
| 105 |
+
for wealth in wealth_signal:
|
| 106 |
+
wealth_tensor = torch.tensor([wealth], dtype=torch.float32) # Convert wealth signal to tensor
|
| 107 |
+
processed_signal = model(wealth_tensor) # Pass through network
|
| 108 |
+
processed_signals.append(processed_signal.item())
|
| 109 |
+
return processed_signals
|
| 110 |
+
|
| 111 |
+
# Function to visualize the wealth signal transformation
|
| 112 |
+
def plot_signal_transformation(original_signal, transformed_signal):
|
| 113 |
+
plt.figure(figsize=(10, 5))
|
| 114 |
+
plt.plot(original_signal, label="Original Wealth Signal", color='g', linestyle='--')
|
| 115 |
+
plt.plot(transformed_signal, label="Positive Energy Signal", color='r')
|
| 116 |
+
plt.title("Wealth Signal Storage and Transformation to Positive Energy")
|
| 117 |
+
plt.xlabel("Iterations (Time)")
|
| 118 |
+
plt.ylabel("Signal Amplitude")
|
| 119 |
+
plt.legend()
|
| 120 |
+
plt.grid(True)
|
| 121 |
+
plt.show()
|
| 122 |
+
|
| 123 |
+
# Initialize the neural network for signal processing
|
| 124 |
+
model = WealthSignalStorageNet()
|
| 125 |
+
|
| 126 |
+
# Generate a wealth signal
|
| 127 |
+
iterations = 100
|
| 128 |
+
wealth_signal = generate_wealth_signal(iterations)
|
| 129 |
+
|
| 130 |
+
# Process the wealth signal through the network
|
| 131 |
+
positive_energy_signal = process_wealth_signal(wealth_signal, model)
|
| 132 |
+
|
| 133 |
+
# Visualize the original wealth signal and the positive energy signal
|
| 134 |
+
plot_signal_transformation(wealth_signal, positive_energy_signal)
|
| 135 |
+
|
| 136 |
+
import torch
|
| 137 |
+
import torch.nn as nn
|
| 138 |
+
import numpy as np
|
| 139 |
+
import matplotlib.pyplot as plt
|
| 140 |
+
|
| 141 |
+
# Define a neural network to simulate nerve transmission
|
| 142 |
+
class WealthSignalNerveNet(nn.Module):
|
| 143 |
+
def __init__(self, input_size=1, hidden_size=64, output_size=1):
|
| 144 |
+
super(WealthSignalNerveNet, self).__init__()
|
| 145 |
+
# Layers to simulate nerve transmission
|
| 146 |
+
self.fc1 = nn.Linear(input_size, hidden_size)
|
| 147 |
+
self.fc2 = nn.Linear(hidden_size, hidden_size)
|
| 148 |
+
self.fc3 = nn.Linear(hidden_size, output_size)
|
| 149 |
+
self.relu = nn.ReLU() # Activation function to simulate signal processing
|
| 150 |
+
|
| 151 |
+
def forward(self, x):
|
| 152 |
+
x = self.relu(self.fc1(x)) # First nerve layer
|
| 153 |
+
x = self.relu(self.fc2(x)) # Second nerve layer
|
| 154 |
+
x = self.fc3(x) # Output layer
|
| 155 |
+
return x
|
| 156 |
+
|
| 157 |
+
# Function to generate a wealth signal using a sine wave
|
| 158 |
+
def generate_wealth_signal(iterations=100):
|
| 159 |
+
time = np.linspace(0, 10, iterations)
|
| 160 |
+
wealth_signal = np.sin(2 * np.pi * time) # Simple sine wave to represent wealth
|
| 161 |
+
return wealth_signal
|
| 162 |
+
|
| 163 |
+
# Function to simulate transmission of wealth signal through the nerve network
|
| 164 |
+
def transmit_signal(wealth_signal, model):
|
| 165 |
+
transmitted_signals = []
|
| 166 |
+
for wealth in wealth_signal:
|
| 167 |
+
wealth_tensor = torch.tensor([wealth], dtype=torch.float32) # Convert to tensor
|
| 168 |
+
transmitted_signal = model(wealth_tensor) # Pass through the neural network
|
| 169 |
+
transmitted_signals.append(transmitted_signal.item())
|
| 170 |
+
return transmitted_signals
|
| 171 |
+
|
| 172 |
+
# Function to visualize the wealth signal transmission
|
| 173 |
+
def plot_signal_transmission(original_signal, transmitted_signal):
|
| 174 |
+
plt.figure(figsize=(12, 6))
|
| 175 |
+
plt.plot(original_signal, label="Original Wealth Signal", color='g', linestyle='--')
|
| 176 |
+
plt.plot(transmitted_signal, label="Transmitted Wealth Signal", color='b')
|
| 177 |
+
plt.title("Transmission of Wealth Signal Through Nerves")
|
| 178 |
+
plt.xlabel("Iterations (Time)")
|
| 179 |
+
plt.ylabel("Signal Amplitude")
|
| 180 |
+
plt.legend()
|
| 181 |
+
plt.grid(True)
|
| 182 |
+
plt.show()
|
| 183 |
+
|
| 184 |
+
# Initialize the neural network
|
| 185 |
+
model = WealthSignalNerveNet()
|
| 186 |
+
|
| 187 |
+
# Generate a wealth signal
|
| 188 |
+
iterations = 100
|
| 189 |
+
wealth_signal = generate_wealth_signal(iterations)
|
| 190 |
+
|
| 191 |
+
# Transmit the wealth signal through the neural network
|
| 192 |
+
transmitted_signal = transmit_signal(wealth_signal, model)
|
| 193 |
+
|
| 194 |
+
# Visualize the original and transmitted signals
|
| 195 |
+
plot_signal_transmission(wealth_signal, transmitted_signal)
|
| 196 |
+
|
| 197 |
+
import torch
|
| 198 |
+
import torch.nn as nn
|
| 199 |
+
import numpy as np
|
| 200 |
+
import matplotlib.pyplot as plt
|
| 201 |
+
|
| 202 |
+
# Define a neural network to simulate encryption, storage, and transmission through atmospheric density
|
| 203 |
+
class AdvancedWealthSignalNet(nn.Module):
|
| 204 |
+
def __init__(self, input_size=1, hidden_size=64, output_size=1):
|
| 205 |
+
super(AdvancedWealthSignalNet, self).__init__()
|
| 206 |
+
# Layers to simulate signal encryption, storage, and atmospheric effects
|
| 207 |
+
self.fc1 = nn.Linear(input_size, hidden_size)
|
| 208 |
+
self.fc2 = nn.Linear(hidden_size, hidden_size)
|
| 209 |
+
self.fc3 = nn.Linear(hidden_size, hidden_size)
|
| 210 |
+
self.fc4 = nn.Linear(hidden_size, output_size)
|
| 211 |
+
self.fc5 = nn.Linear(output_size, output_size)
|
| 212 |
+
self.relu = nn.ReLU()
|
| 213 |
+
self.sigmoid = nn.Sigmoid()
|
| 214 |
+
self.noise_std = 0.1 # Standard deviation for noise simulation
|
| 215 |
+
|
| 216 |
+
def forward(self, x):
|
| 217 |
+
x = self.relu(self.fc1(x)) # Encryption simulation
|
| 218 |
+
x = self.relu(self.fc2(x)) # Intermediate storage
|
| 219 |
+
x = self.relu(self.fc3(x)) # Further storage
|
| 220 |
+
x = self.fc4(x) # Simulate transmission through dense medium
|
| 221 |
+
x = self.fc5(x) # Final transformation
|
| 222 |
+
x = self.sigmoid(x) # Ensure positive output
|
| 223 |
+
|
| 224 |
+
# Simulate atmospheric noise
|
| 225 |
+
noise = torch.normal(mean=0, std=self.noise_std, size=x.size())
|
| 226 |
+
x = x + noise
|
| 227 |
+
return x
|
| 228 |
+
|
| 229 |
+
# Function to generate a wealth signal using a sine wave
|
| 230 |
+
def generate_wealth_signal(iterations=100):
|
| 231 |
+
time = np.linspace(0, 10, iterations)
|
| 232 |
+
wealth_signal = np.sin(2 * np.pi * time) # Simple sine wave to represent wealth
|
| 233 |
+
return wealth_signal
|
| 234 |
+
|
| 235 |
+
# Function to process and protect the wealth signal through the network
|
| 236 |
+
def process_and_protect_signal(wealth_signal, model):
|
| 237 |
+
processed_signals = []
|
| 238 |
+
for wealth in wealth_signal:
|
| 239 |
+
wealth_tensor = torch.tensor([wealth], dtype=torch.float32) # Convert to tensor
|
| 240 |
+
protected_signal = model(wealth_tensor) # Pass through the network
|
| 241 |
+
processed_signals.append(protected_signal.item())
|
| 242 |
+
return processed_signals
|
| 243 |
+
|
| 244 |
+
# Function to visualize the wealth signal with protection and atmospheric effects
|
| 245 |
+
def plot_signal_protection_and_atmospheric_effects(original_signal, processed_signal):
|
| 246 |
+
plt.figure(figsize=(12, 6))
|
| 247 |
+
plt.plot(original_signal, label="Wealth Signal", color='g', linestyle='--')
|
| 248 |
+
plt.plot(processed_signal, label="Protected", color='r')
|
| 249 |
+
plt.title("Atmosecure")
|
| 250 |
+
plt.xlabel("Iterations (Time)")
|
| 251 |
+
plt.ylabel("Signal Amplitude")
|
| 252 |
+
plt.legend()
|
| 253 |
+
plt.grid(True)
|
| 254 |
+
plt.show()
|
| 255 |
+
|
| 256 |
+
# Initialize the neural network for advanced signal processing and protection
|
| 257 |
+
model = AdvancedWealthSignalNet()
|
| 258 |
+
|
| 259 |
+
# Generate a wealth signal
|
| 260 |
+
iterations = 100
|
| 261 |
+
wealth_signal = generate_wealth_signal(iterations)
|
| 262 |
+
|
| 263 |
+
# Process and protect the wealth signal through the network
|
| 264 |
+
protected_signal = process_and_protect_signal(wealth_signal, model)
|
| 265 |
+
|
| 266 |
+
# Visualize the original and protected signals
|
| 267 |
+
plot_signal_protection_and_atmospheric_effects(wealth_signal, protected_signal)
|