aotrih commited on
Commit
329334c
·
1 Parent(s): d00c880

Initial commit

Browse files
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ *.DS_Store
LICENSE DELETED
File without changes
LICENSE_NOTICE.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ Argmax proprietary and confidential. Under NDA.
2
+
3
+ Copyright 2024 Argmax, Inc. All rights reserved.
4
+
5
+ Unauthorized access, copying, use, distribution, and or commercialization of this file, via any medium or means is strictly prohibited.
6
+
7
+ Please contact Argmax for licensing information at [email protected].
README.md CHANGED
@@ -1,5 +1,31 @@
1
  ---
2
  license: other
3
  license_name: argmax-fmod-license
4
- license_link: LICENSE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  ---
 
 
 
1
  ---
2
  license: other
3
  license_name: argmax-fmod-license
4
+ license_link: https://huggingface.co/argmaxinc/parakeetkit-pro/blob/main/LICENSE_NOTICE.txt
5
+ pretty_name: "ParakeetKit"
6
+ viewer: false
7
+ library_name: whisperkit
8
+ tags:
9
+ - whisper
10
+ - whisperkit
11
+ - parakeet
12
+ - nvidia
13
+ - openai
14
+ - coreml
15
+ - asr
16
+ - transcription
17
+ - local
18
+ - on-device
19
+ - quantized
20
+ - compressed
21
+ - automatic-speech-recognition
22
+ extra_gated_heading: "ParakeetKit Pro (Part of Argmax SDK)"
23
+ extra_gated_description: "ParakeetKit Pro deploys Nvidia Parakeet models on Apple Silicon. Request access to [Argmax SDK](https://www.argmaxinc.com/#request-access)"
24
+ extra_gated_fields:
25
+ Company: text
26
+ Work email: text
27
+ I acknowledge the license notice: checkbox
28
+ extra_gated_button_content: "Submit"
29
  ---
30
+
31
+ # ParakeetKit Pro
nvidia_parakeet-v2/AudioEncoder.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:692d0a743521402679dbfab76b054448ddb2fe9e8f26ed87252ab73a17080ac3
3
+ size 243
nvidia_parakeet-v2/AudioEncoder.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49b5a4d69d29bd453b790affeb44eef4155ecba0cc19cc6dfb37515eacc66b7f
3
+ size 405
nvidia_parakeet-v2/AudioEncoder.mlmodelc/metadata.json ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "storagePrecision" : "Float16",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float16",
10
+ "formattedType" : "MultiArray (Float16 1 × 1024 × 1 × 188)",
11
+ "shortDescription" : "",
12
+ "shape" : "[1, 1024, 1, 188]",
13
+ "name" : "encoder_output_embeds",
14
+ "type" : "MultiArray"
15
+ },
16
+ {
17
+ "hasShapeFlexibility" : "0",
18
+ "isOptional" : "0",
19
+ "dataType" : "Float16",
20
+ "formattedType" : "MultiArray (Float16 1 × 640 × 1 × 188)",
21
+ "shortDescription" : "",
22
+ "shape" : "[1, 640, 1, 188]",
23
+ "name" : "joint_projected_encoder_output_embeds",
24
+ "type" : "MultiArray"
25
+ }
26
+ ],
27
+ "modelParameters" : [
28
+
29
+ ],
30
+ "specificationVersion" : 8,
31
+ "mlProgramOperationTypeHistogram" : {
32
+ "Ios16.silu" : 72,
33
+ "Ios17.mul" : 72,
34
+ "Split" : 24,
35
+ "Ios17.transpose" : 1,
36
+ "Ios17.matmul" : 72,
37
+ "Ios17.conv" : 295,
38
+ "Ios16.sigmoid" : 24,
39
+ "Ios17.add" : 168,
40
+ "Ios17.sliceByIndex" : 48,
41
+ "Ios17.batchNorm" : 120,
42
+ "Ios16.relu" : 3,
43
+ "Ios16.softmax" : 24,
44
+ "Ios17.reshape" : 193,
45
+ "Ios17.layerNorm" : 120,
46
+ "Pad" : 24
47
+ },
48
+ "computePrecision" : "Mixed (Float16, Int32)",
49
+ "isUpdatable" : "0",
50
+ "stateSchema" : [
51
+
52
+ ],
53
+ "availability" : {
54
+ "macOS" : "14.0",
55
+ "tvOS" : "17.0",
56
+ "visionOS" : "1.0",
57
+ "watchOS" : "10.0",
58
+ "iOS" : "17.0",
59
+ "macCatalyst" : "17.0"
60
+ },
61
+ "modelType" : {
62
+ "name" : "MLModelType_mlProgram"
63
+ },
64
+ "userDefinedMetadata" : {
65
+ "com.github.apple.coremltools.source_dialect" : "TorchScript",
66
+ "com.github.apple.coremltools.source" : "torch==2.6.0",
67
+ "com.github.apple.coremltools.version" : "8.2"
68
+ },
69
+ "inputSchema" : [
70
+ {
71
+ "hasShapeFlexibility" : "0",
72
+ "isOptional" : "0",
73
+ "dataType" : "Float16",
74
+ "formattedType" : "MultiArray (Float16 1 × 1 × 1501 × 128)",
75
+ "shortDescription" : "",
76
+ "shape" : "[1, 1, 1501, 128]",
77
+ "name" : "melspectrogram_features",
78
+ "type" : "MultiArray"
79
+ }
80
+ ],
81
+ "generatedClassName" : "AudioEncoder",
82
+ "method" : "predict"
83
+ }
84
+ ]
nvidia_parakeet-v2/AudioEncoder.mlmodelc/model.mil ADDED
The diff for this file is too large to render. See raw diff
 
nvidia_parakeet-v2/AudioEncoder.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:847b7f622f378e62feae92ac279191bdf7f10c1b0eba8aa772eacbb8308a13ac
3
+ size 1219841984
nvidia_parakeet-v2/LICENSE_NOTICE.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ Argmax proprietary and confidential. Under NDA.
2
+
3
+ Copyright 2024 Argmax, Inc. All rights reserved.
4
+
5
+ Unauthorized access, copying, use, distribution, and or commercialization of this file, via any medium or means is strictly prohibited.
6
+
7
+ Please contact Argmax for licensing information at [email protected].
nvidia_parakeet-v2/MelSpectrogram.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f9e0ad4bff30b21d884c2cdc5bf1551b59209d9314c93a11f6bc4a21e4d26b5
3
+ size 243
nvidia_parakeet-v2/MelSpectrogram.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ff0c946a5a04b1f3d754001c0951bea58f79e57e04124d6da0f03a09c535acd
3
+ size 327
nvidia_parakeet-v2/MelSpectrogram.mlmodelc/metadata.json ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "storagePrecision" : "Float16",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float16",
10
+ "formattedType" : "MultiArray (Float16 128 × 1501)",
11
+ "shortDescription" : "",
12
+ "shape" : "[128, 1501]",
13
+ "name" : "melspectrogram_features",
14
+ "type" : "MultiArray"
15
+ }
16
+ ],
17
+ "modelParameters" : [
18
+
19
+ ],
20
+ "specificationVersion" : 8,
21
+ "mlProgramOperationTypeHistogram" : {
22
+ "Ios17.mul" : 2,
23
+ "Ios17.sqrt" : 1,
24
+ "Ios17.square" : 3,
25
+ "Ios17.sub" : 2,
26
+ "Ios17.matmul" : 1,
27
+ "Ios17.conv" : 2,
28
+ "Ios17.log" : 1,
29
+ "Ios17.sliceByIndex" : 2,
30
+ "Ios17.add" : 3,
31
+ "Ios16.reduceMean" : 2,
32
+ "Ios17.realDiv" : 1,
33
+ "Ios17.expandDims" : 2,
34
+ "Ios17.squeeze" : 2,
35
+ "Ios17.reshape" : 2,
36
+ "Identity" : 1,
37
+ "Pad" : 2
38
+ },
39
+ "computePrecision" : "Mixed (Float16, Float32, Int32)",
40
+ "isUpdatable" : "0",
41
+ "stateSchema" : [
42
+
43
+ ],
44
+ "availability" : {
45
+ "macOS" : "14.0",
46
+ "tvOS" : "17.0",
47
+ "visionOS" : "1.0",
48
+ "watchOS" : "10.0",
49
+ "iOS" : "17.0",
50
+ "macCatalyst" : "17.0"
51
+ },
52
+ "modelType" : {
53
+ "name" : "MLModelType_mlProgram"
54
+ },
55
+ "userDefinedMetadata" : {
56
+ "com.github.apple.coremltools.source_dialect" : "TorchScript",
57
+ "com.github.apple.coremltools.version" : "8.2",
58
+ "com.github.apple.coremltools.source" : "torch==2.6.0"
59
+ },
60
+ "inputSchema" : [
61
+ {
62
+ "hasShapeFlexibility" : "0",
63
+ "isOptional" : "0",
64
+ "dataType" : "Float16",
65
+ "formattedType" : "MultiArray (Float16 240000)",
66
+ "shortDescription" : "",
67
+ "shape" : "[240000]",
68
+ "name" : "audio",
69
+ "type" : "MultiArray"
70
+ }
71
+ ],
72
+ "generatedClassName" : "MelSpectrogram",
73
+ "method" : "predict"
74
+ }
75
+ ]
nvidia_parakeet-v2/MelSpectrogram.mlmodelc/model.mil ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ program(1.0)
2
+ [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3401.3.1"}, {"coremlc-version", "3401.4.1"}, {"coremltools-component-torch", "2.6.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.2"}})]
3
+ {
4
+ func main<ios17>(tensor<fp16, [240000]> audio) {
5
+ tensor<int32, [1]> var_8_begin_0 = const()[name = tensor<string, []>("op_8_begin_0"), val = tensor<int32, [1]>([1])];
6
+ tensor<int32, [1]> var_8_end_0 = const()[name = tensor<string, []>("op_8_end_0"), val = tensor<int32, [1]>([240000])];
7
+ tensor<bool, [1]> var_8_end_mask_0 = const()[name = tensor<string, []>("op_8_end_mask_0"), val = tensor<bool, [1]>([true])];
8
+ tensor<fp16, [239999]> var_8_cast_fp16 = slice_by_index(begin = var_8_begin_0, end = var_8_end_0, end_mask = var_8_end_mask_0, x = audio)[name = tensor<string, []>("op_8_cast_fp16")];
9
+ tensor<int32, [1]> var_13_begin_0 = const()[name = tensor<string, []>("op_13_begin_0"), val = tensor<int32, [1]>([0])];
10
+ tensor<int32, [1]> var_13_end_0 = const()[name = tensor<string, []>("op_13_end_0"), val = tensor<int32, [1]>([239999])];
11
+ tensor<bool, [1]> var_13_end_mask_0 = const()[name = tensor<string, []>("op_13_end_mask_0"), val = tensor<bool, [1]>([false])];
12
+ tensor<fp16, [239999]> var_13_cast_fp16 = slice_by_index(begin = var_13_begin_0, end = var_13_end_0, end_mask = var_13_end_mask_0, x = audio)[name = tensor<string, []>("op_13_cast_fp16")];
13
+ tensor<fp16, []> var_14_to_fp16 = const()[name = tensor<string, []>("op_14_to_fp16"), val = tensor<fp16, []>(0x1.f0cp-1)];
14
+ tensor<fp16, [239999]> var_15_cast_fp16 = mul(x = var_13_cast_fp16, y = var_14_to_fp16)[name = tensor<string, []>("op_15_cast_fp16")];
15
+ tensor<fp16, [239999]> input_1_cast_fp16 = sub(x = var_8_cast_fp16, y = var_15_cast_fp16)[name = tensor<string, []>("input_1_cast_fp16")];
16
+ tensor<int32, [2]> input_3_pad_0 = const()[name = tensor<string, []>("input_3_pad_0"), val = tensor<int32, [2]>([1, 0])];
17
+ tensor<string, []> input_3_mode_0 = const()[name = tensor<string, []>("input_3_mode_0"), val = tensor<string, []>("constant")];
18
+ tensor<fp16, []> const_0_to_fp16 = const()[name = tensor<string, []>("const_0_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
19
+ tensor<fp16, [240000]> input_3_cast_fp16 = pad(constant_val = const_0_to_fp16, mode = input_3_mode_0, pad = input_3_pad_0, x = input_1_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
20
+ tensor<int32, [3]> var_30 = const()[name = tensor<string, []>("op_30"), val = tensor<int32, [3]>([1, 1, 240000])];
21
+ tensor<fp16, [1, 1, 240000]> input_5_cast_fp16 = reshape(shape = var_30, x = input_3_cast_fp16)[name = tensor<string, []>("input_5_cast_fp16")];
22
+ tensor<int32, [6]> input_7_pad_0 = const()[name = tensor<string, []>("input_7_pad_0"), val = tensor<int32, [6]>([0, 0, 0, 0, 256, 256])];
23
+ tensor<string, []> input_7_mode_0 = const()[name = tensor<string, []>("input_7_mode_0"), val = tensor<string, []>("reflect")];
24
+ tensor<fp16, []> const_2_to_fp16 = const()[name = tensor<string, []>("const_2_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
25
+ tensor<fp16, [1, 1, 240512]> input_7_cast_fp16 = pad(constant_val = const_2_to_fp16, mode = input_7_mode_0, pad = input_7_pad_0, x = input_5_cast_fp16)[name = tensor<string, []>("input_7_cast_fp16")];
26
+ tensor<int32, [1]> var_42 = const()[name = tensor<string, []>("op_42"), val = tensor<int32, [1]>([240512])];
27
+ tensor<fp16, [240512]> input_cast_fp16 = reshape(shape = var_42, x = input_7_cast_fp16)[name = tensor<string, []>("input_cast_fp16")];
28
+ tensor<int32, [1]> expand_dims_0_axes_0 = const()[name = tensor<string, []>("expand_dims_0_axes_0"), val = tensor<int32, [1]>([0])];
29
+ tensor<fp16, [1, 240512]> expand_dims_0_cast_fp16 = expand_dims(axes = expand_dims_0_axes_0, x = input_cast_fp16)[name = tensor<string, []>("expand_dims_0_cast_fp16")];
30
+ tensor<int32, [1]> expand_dims_3 = const()[name = tensor<string, []>("expand_dims_3"), val = tensor<int32, [1]>([160])];
31
+ tensor<int32, [1]> expand_dims_4_axes_0 = const()[name = tensor<string, []>("expand_dims_4_axes_0"), val = tensor<int32, [1]>([1])];
32
+ tensor<fp16, [1, 1, 240512]> expand_dims_4_cast_fp16 = expand_dims(axes = expand_dims_4_axes_0, x = expand_dims_0_cast_fp16)[name = tensor<string, []>("expand_dims_4_cast_fp16")];
33
+ tensor<string, []> conv_0_pad_type_0 = const()[name = tensor<string, []>("conv_0_pad_type_0"), val = tensor<string, []>("valid")];
34
+ tensor<int32, [2]> conv_0_pad_0 = const()[name = tensor<string, []>("conv_0_pad_0"), val = tensor<int32, [2]>([0, 0])];
35
+ tensor<int32, [1]> conv_0_dilations_0 = const()[name = tensor<string, []>("conv_0_dilations_0"), val = tensor<int32, [1]>([1])];
36
+ tensor<int32, []> conv_0_groups_0 = const()[name = tensor<string, []>("conv_0_groups_0"), val = tensor<int32, []>(1)];
37
+ tensor<fp16, [257, 1, 512]> expand_dims_1_to_fp16 = const()[name = tensor<string, []>("expand_dims_1_to_fp16"), val = tensor<fp16, [257, 1, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
38
+ tensor<fp16, [1, 257, 1501]> conv_0_cast_fp16 = conv(dilations = conv_0_dilations_0, groups = conv_0_groups_0, pad = conv_0_pad_0, pad_type = conv_0_pad_type_0, strides = expand_dims_3, weight = expand_dims_1_to_fp16, x = expand_dims_4_cast_fp16)[name = tensor<string, []>("conv_0_cast_fp16")];
39
+ tensor<string, []> conv_1_pad_type_0 = const()[name = tensor<string, []>("conv_1_pad_type_0"), val = tensor<string, []>("valid")];
40
+ tensor<int32, [2]> conv_1_pad_0 = const()[name = tensor<string, []>("conv_1_pad_0"), val = tensor<int32, [2]>([0, 0])];
41
+ tensor<int32, [1]> conv_1_dilations_0 = const()[name = tensor<string, []>("conv_1_dilations_0"), val = tensor<int32, [1]>([1])];
42
+ tensor<int32, []> conv_1_groups_0 = const()[name = tensor<string, []>("conv_1_groups_0"), val = tensor<int32, []>(1)];
43
+ tensor<fp16, [257, 1, 512]> expand_dims_2_to_fp16 = const()[name = tensor<string, []>("expand_dims_2_to_fp16"), val = tensor<fp16, [257, 1, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(263296)))];
44
+ tensor<fp16, [1, 257, 1501]> conv_1_cast_fp16 = conv(dilations = conv_1_dilations_0, groups = conv_1_groups_0, pad = conv_1_pad_0, pad_type = conv_1_pad_type_0, strides = expand_dims_3, weight = expand_dims_2_to_fp16, x = expand_dims_4_cast_fp16)[name = tensor<string, []>("conv_1_cast_fp16")];
45
+ tensor<int32, [1]> squeeze_0_axes_0 = const()[name = tensor<string, []>("squeeze_0_axes_0"), val = tensor<int32, [1]>([0])];
46
+ tensor<fp16, [257, 1501]> squeeze_0_cast_fp16 = squeeze(axes = squeeze_0_axes_0, x = conv_0_cast_fp16)[name = tensor<string, []>("squeeze_0_cast_fp16")];
47
+ tensor<int32, [1]> squeeze_1_axes_0 = const()[name = tensor<string, []>("squeeze_1_axes_0"), val = tensor<int32, [1]>([0])];
48
+ tensor<fp16, [257, 1501]> squeeze_1_cast_fp16 = squeeze(axes = squeeze_1_axes_0, x = conv_1_cast_fp16)[name = tensor<string, []>("squeeze_1_cast_fp16")];
49
+ tensor<fp16, [257, 1501]> square_1_cast_fp16 = square(x = squeeze_0_cast_fp16)[name = tensor<string, []>("square_1_cast_fp16")];
50
+ tensor<fp16, [257, 1501]> square_2_cast_fp16 = square(x = squeeze_1_cast_fp16)[name = tensor<string, []>("square_2_cast_fp16")];
51
+ tensor<fp16, [257, 1501]> add_1_cast_fp16 = add(x = square_1_cast_fp16, y = square_2_cast_fp16)[name = tensor<string, []>("add_1_cast_fp16")];
52
+ tensor<fp16, [257, 1501]> magnitudes_cast_fp16 = identity(x = add_1_cast_fp16)[name = tensor<string, []>("magnitudes_cast_fp16")];
53
+ tensor<bool, []> mel_spec_1_transpose_x_0 = const()[name = tensor<string, []>("mel_spec_1_transpose_x_0"), val = tensor<bool, []>(false)];
54
+ tensor<bool, []> mel_spec_1_transpose_y_0 = const()[name = tensor<string, []>("mel_spec_1_transpose_y_0"), val = tensor<bool, []>(false)];
55
+ tensor<fp16, [128, 257]> mel_filters_to_fp16 = const()[name = tensor<string, []>("mel_filters_to_fp16"), val = tensor<fp16, [128, 257]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(526528)))];
56
+ tensor<fp16, [128, 1501]> mel_spec_1_cast_fp16 = matmul(transpose_x = mel_spec_1_transpose_x_0, transpose_y = mel_spec_1_transpose_y_0, x = mel_filters_to_fp16, y = magnitudes_cast_fp16)[name = tensor<string, []>("mel_spec_1_cast_fp16")];
57
+ tensor<fp16, []> var_56_to_fp16 = const()[name = tensor<string, []>("op_56_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
58
+ tensor<fp16, [128, 1501]> mel_spec_3_cast_fp16 = add(x = mel_spec_1_cast_fp16, y = var_56_to_fp16)[name = tensor<string, []>("mel_spec_3_cast_fp16")];
59
+ tensor<fp32, []> mel_spec_epsilon_0 = const()[name = tensor<string, []>("mel_spec_epsilon_0"), val = tensor<fp32, []>(0x1p-149)];
60
+ tensor<fp16, [128, 1501]> mel_spec_cast_fp16 = log(epsilon = mel_spec_epsilon_0, x = mel_spec_3_cast_fp16)[name = tensor<string, []>("mel_spec_cast_fp16")];
61
+ tensor<int32, [1]> per_feature_mean_axes_0 = const()[name = tensor<string, []>("per_feature_mean_axes_0"), val = tensor<int32, [1]>([-1])];
62
+ tensor<bool, []> per_feature_mean_keep_dims_0 = const()[name = tensor<string, []>("per_feature_mean_keep_dims_0"), val = tensor<bool, []>(true)];
63
+ tensor<fp16, [128, 1]> per_feature_mean_cast_fp16 = reduce_mean(axes = per_feature_mean_axes_0, keep_dims = per_feature_mean_keep_dims_0, x = mel_spec_cast_fp16)[name = tensor<string, []>("per_feature_mean_cast_fp16")];
64
+ tensor<fp16, [128, 1501]> sub_0_cast_fp16 = sub(x = mel_spec_cast_fp16, y = per_feature_mean_cast_fp16)[name = tensor<string, []>("sub_0_cast_fp16")];
65
+ tensor<fp16, [128, 1501]> square_0_cast_fp16 = square(x = sub_0_cast_fp16)[name = tensor<string, []>("square_0_cast_fp16")];
66
+ tensor<int32, [1]> reduce_mean_1_axes_0 = const()[name = tensor<string, []>("reduce_mean_1_axes_0"), val = tensor<int32, [1]>([-1])];
67
+ tensor<bool, []> reduce_mean_1_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_1_keep_dims_0"), val = tensor<bool, []>(true)];
68
+ tensor<fp16, [128, 1]> reduce_mean_1_cast_fp16 = reduce_mean(axes = reduce_mean_1_axes_0, keep_dims = reduce_mean_1_keep_dims_0, x = square_0_cast_fp16)[name = tensor<string, []>("reduce_mean_1_cast_fp16")];
69
+ tensor<fp16, []> real_div_0_to_fp16 = const()[name = tensor<string, []>("real_div_0_to_fp16"), val = tensor<fp16, []>(0x1.004p+0)];
70
+ tensor<fp16, [128, 1]> mul_0_cast_fp16 = mul(x = reduce_mean_1_cast_fp16, y = real_div_0_to_fp16)[name = tensor<string, []>("mul_0_cast_fp16")];
71
+ tensor<fp16, [128, 1]> sqrt_0_cast_fp16 = sqrt(x = mul_0_cast_fp16)[name = tensor<string, []>("sqrt_0_cast_fp16")];
72
+ tensor<fp16, []> var_70_to_fp16 = const()[name = tensor<string, []>("op_70_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
73
+ tensor<fp16, [128, 1]> per_feature_std_cast_fp16 = add(x = sqrt_0_cast_fp16, y = var_70_to_fp16)[name = tensor<string, []>("per_feature_std_cast_fp16")];
74
+ tensor<fp16, [128, 1501]> melspectrogram_features = real_div(x = sub_0_cast_fp16, y = per_feature_std_cast_fp16)[name = tensor<string, []>("op_74_cast_fp16")];
75
+ } -> (melspectrogram_features);
76
+ }
nvidia_parakeet-v2/MelSpectrogram.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:023c2303b7c3a1fafed92fc6ec46c1d43a48c0bbcdf33d6441d383a61747734c
3
+ size 592384
nvidia_parakeet-v2/MultimodalLogits.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15e92aaa4d64eb8c9ac6347b0a71bd2d054a78ab589f1a86e19d0fca384e1024
3
+ size 243
nvidia_parakeet-v2/MultimodalLogits.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:077f39d87111ac670e39938177f145f3f28b5a4845e95d1af2e716de3e23dd6f
3
+ size 369
nvidia_parakeet-v2/MultimodalLogits.mlmodelc/metadata.json ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "storagePrecision" : "Float16",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float16",
10
+ "formattedType" : "MultiArray (Float16 1 × 1030)",
11
+ "shortDescription" : "",
12
+ "shape" : "[1, 1030]",
13
+ "name" : "logits",
14
+ "type" : "MultiArray"
15
+ }
16
+ ],
17
+ "modelParameters" : [
18
+
19
+ ],
20
+ "specificationVersion" : 8,
21
+ "mlProgramOperationTypeHistogram" : {
22
+ "Ios16.softmax" : 1,
23
+ "Ios17.log" : 1,
24
+ "Ios17.linear" : 1,
25
+ "Ios17.add" : 1,
26
+ "Ios16.relu" : 1
27
+ },
28
+ "computePrecision" : "Mixed (Float16, Float32, Int32)",
29
+ "isUpdatable" : "0",
30
+ "stateSchema" : [
31
+
32
+ ],
33
+ "availability" : {
34
+ "macOS" : "14.0",
35
+ "tvOS" : "17.0",
36
+ "visionOS" : "1.0",
37
+ "watchOS" : "10.0",
38
+ "iOS" : "17.0",
39
+ "macCatalyst" : "17.0"
40
+ },
41
+ "modelType" : {
42
+ "name" : "MLModelType_mlProgram"
43
+ },
44
+ "userDefinedMetadata" : {
45
+ "com.github.apple.coremltools.source_dialect" : "TorchScript",
46
+ "com.github.apple.coremltools.source" : "torch==2.6.0",
47
+ "com.github.apple.coremltools.version" : "8.2"
48
+ },
49
+ "inputSchema" : [
50
+ {
51
+ "hasShapeFlexibility" : "0",
52
+ "isOptional" : "0",
53
+ "dataType" : "Float16",
54
+ "formattedType" : "MultiArray (Float16 1 × 640)",
55
+ "shortDescription" : "",
56
+ "shape" : "[1, 640]",
57
+ "name" : "encoder_output_projected",
58
+ "type" : "MultiArray"
59
+ },
60
+ {
61
+ "hasShapeFlexibility" : "0",
62
+ "isOptional" : "0",
63
+ "dataType" : "Float16",
64
+ "formattedType" : "MultiArray (Float16 1 × 640)",
65
+ "shortDescription" : "",
66
+ "shape" : "[1, 640]",
67
+ "name" : "decoder_output_projected",
68
+ "type" : "MultiArray"
69
+ }
70
+ ],
71
+ "generatedClassName" : "MultimodalLogits",
72
+ "method" : "predict"
73
+ }
74
+ ]
nvidia_parakeet-v2/MultimodalLogits.mlmodelc/model.mil ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ program(1.0)
2
+ [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3401.3.1"}, {"coremlc-version", "3401.4.1"}, {"coremltools-component-torch", "2.6.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.2"}})]
3
+ {
4
+ func main<ios17>(tensor<fp16, [1, 640]> decoder_output_projected, tensor<fp16, [1, 640]> encoder_output_projected) {
5
+ tensor<fp16, [1, 640]> input_1_cast_fp16 = add(x = decoder_output_projected, y = encoder_output_projected)[name = tensor<string, []>("input_1_cast_fp16")];
6
+ tensor<fp16, [1, 640]> input_3_cast_fp16 = relu(x = input_1_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
7
+ tensor<fp16, [1030, 640]> joint_net_1_weight_to_fp16 = const()[name = tensor<string, []>("joint_net_1_weight_to_fp16"), val = tensor<fp16, [1030, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
8
+ tensor<fp16, [1030]> joint_net_1_bias_to_fp16 = const()[name = tensor<string, []>("joint_net_1_bias_to_fp16"), val = tensor<fp16, [1030]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1318528)))];
9
+ tensor<fp16, [1, 1030]> linear_0_cast_fp16 = linear(bias = joint_net_1_bias_to_fp16, weight = joint_net_1_weight_to_fp16, x = input_3_cast_fp16)[name = tensor<string, []>("linear_0_cast_fp16")];
10
+ tensor<int32, []> var_11 = const()[name = tensor<string, []>("op_11"), val = tensor<int32, []>(-1)];
11
+ tensor<fp16, [1, 1030]> var_13_softmax_cast_fp16 = softmax(axis = var_11, x = linear_0_cast_fp16)[name = tensor<string, []>("op_13_softmax_cast_fp16")];
12
+ tensor<fp32, []> var_13_epsilon_0 = const()[name = tensor<string, []>("op_13_epsilon_0"), val = tensor<fp32, []>(0x1p-149)];
13
+ tensor<fp16, [1, 1030]> logits = log(epsilon = var_13_epsilon_0, x = var_13_softmax_cast_fp16)[name = tensor<string, []>("op_13_cast_fp16")];
14
+ } -> (logits);
15
+ }
nvidia_parakeet-v2/MultimodalLogits.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90d1edb3c533791da821c091c4a37e948b556aca9637da03f4024a0c7c4f02f2
3
+ size 1320652
nvidia_parakeet-v2/TextDecoder.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:170a169a6cc4087fc6a62541a66bfdf1dfd7613ad6e32e94a3d9e161436b581a
3
+ size 243
nvidia_parakeet-v2/TextDecoder.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcb5824d67862c34f3e63afdefd4aa6024a8bc5531a283ff538b0354309c03f3
3
+ size 441
nvidia_parakeet-v2/TextDecoder.mlmodelc/metadata.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "storagePrecision" : "Float16",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float16",
10
+ "formattedType" : "MultiArray (Float16 1 × 640)",
11
+ "shortDescription" : "",
12
+ "shape" : "[1, 640]",
13
+ "name" : "decoder_output_projected",
14
+ "type" : "MultiArray"
15
+ },
16
+ {
17
+ "hasShapeFlexibility" : "0",
18
+ "isOptional" : "0",
19
+ "dataType" : "Float16",
20
+ "formattedType" : "MultiArray (Float16 2 × 640)",
21
+ "shortDescription" : "",
22
+ "shape" : "[2, 640]",
23
+ "name" : "new_state_1",
24
+ "type" : "MultiArray"
25
+ },
26
+ {
27
+ "hasShapeFlexibility" : "0",
28
+ "isOptional" : "0",
29
+ "dataType" : "Float16",
30
+ "formattedType" : "MultiArray (Float16 2 × 640)",
31
+ "shortDescription" : "",
32
+ "shape" : "[2, 640]",
33
+ "name" : "new_state_2",
34
+ "type" : "MultiArray"
35
+ }
36
+ ],
37
+ "modelParameters" : [
38
+
39
+ ],
40
+ "specificationVersion" : 8,
41
+ "mlProgramOperationTypeHistogram" : {
42
+ "Ios17.squeeze" : 7,
43
+ "Ios17.gather" : 1,
44
+ "Ios17.cast" : 1,
45
+ "Ios17.lstm" : 2,
46
+ "Split" : 2,
47
+ "Ios17.linear" : 1,
48
+ "Stack" : 2,
49
+ "Ios17.expandDims" : 3
50
+ },
51
+ "computePrecision" : "Mixed (Float16, Int16, Int32)",
52
+ "isUpdatable" : "0",
53
+ "stateSchema" : [
54
+
55
+ ],
56
+ "availability" : {
57
+ "macOS" : "14.0",
58
+ "tvOS" : "17.0",
59
+ "visionOS" : "1.0",
60
+ "watchOS" : "10.0",
61
+ "iOS" : "17.0",
62
+ "macCatalyst" : "17.0"
63
+ },
64
+ "modelType" : {
65
+ "name" : "MLModelType_mlProgram"
66
+ },
67
+ "userDefinedMetadata" : {
68
+ "com.github.apple.coremltools.source_dialect" : "TorchScript",
69
+ "com.github.apple.coremltools.source" : "torch==2.6.0",
70
+ "com.github.apple.coremltools.version" : "8.2"
71
+ },
72
+ "inputSchema" : [
73
+ {
74
+ "hasShapeFlexibility" : "0",
75
+ "isOptional" : "0",
76
+ "dataType" : "Int32",
77
+ "formattedType" : "MultiArray (Int32 1)",
78
+ "shortDescription" : "",
79
+ "shape" : "[1]",
80
+ "name" : "decoder_input_ids",
81
+ "type" : "MultiArray"
82
+ },
83
+ {
84
+ "hasShapeFlexibility" : "0",
85
+ "isOptional" : "0",
86
+ "dataType" : "Float16",
87
+ "formattedType" : "MultiArray (Float16 2 × 640)",
88
+ "shortDescription" : "",
89
+ "shape" : "[2, 640]",
90
+ "name" : "state_1",
91
+ "type" : "MultiArray"
92
+ },
93
+ {
94
+ "hasShapeFlexibility" : "0",
95
+ "isOptional" : "0",
96
+ "dataType" : "Float16",
97
+ "formattedType" : "MultiArray (Float16 2 × 640)",
98
+ "shortDescription" : "",
99
+ "shape" : "[2, 640]",
100
+ "name" : "state_2",
101
+ "type" : "MultiArray"
102
+ }
103
+ ],
104
+ "generatedClassName" : "TextDecoder",
105
+ "method" : "predict"
106
+ }
107
+ ]
nvidia_parakeet-v2/TextDecoder.mlmodelc/model.mil ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ program(1.0)
2
+ [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3401.3.1"}, {"coremlc-version", "3401.4.1"}, {"coremltools-component-torch", "2.6.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.2"}})]
3
+ {
4
+ func main<ios17>(tensor<int32, [1]> decoder_input_ids, tensor<fp16, [2, 640]> state_1, tensor<fp16, [2, 640]> state_2) {
5
+ tensor<int32, []> input_1_axis_0 = const()[name = tensor<string, []>("input_1_axis_0"), val = tensor<int32, []>(0)];
6
+ tensor<int32, []> input_1_batch_dims_0 = const()[name = tensor<string, []>("input_1_batch_dims_0"), val = tensor<int32, []>(0)];
7
+ tensor<bool, []> input_1_validate_indices_0 = const()[name = tensor<string, []>("input_1_validate_indices_0"), val = tensor<bool, []>(false)];
8
+ tensor<fp16, [1025, 640]> prediction_embed_weight_to_fp16 = const()[name = tensor<string, []>("prediction_embed_weight_to_fp16"), val = tensor<fp16, [1025, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
9
+ tensor<string, []> decoder_input_ids_to_int16_dtype_0 = const()[name = tensor<string, []>("decoder_input_ids_to_int16_dtype_0"), val = tensor<string, []>("int16")];
10
+ tensor<int16, [1]> decoder_input_ids_to_int16 = cast(dtype = decoder_input_ids_to_int16_dtype_0, x = decoder_input_ids)[name = tensor<string, []>("cast_6")];
11
+ tensor<fp16, [1, 640]> input_1_cast_fp16_cast_uint16 = gather(axis = input_1_axis_0, batch_dims = input_1_batch_dims_0, indices = decoder_input_ids_to_int16, validate_indices = input_1_validate_indices_0, x = prediction_embed_weight_to_fp16)[name = tensor<string, []>("input_1_cast_fp16_cast_uint16")];
12
+ tensor<int32, [1]> input_3_axes_0 = const()[name = tensor<string, []>("input_3_axes_0"), val = tensor<int32, [1]>([1])];
13
+ tensor<fp16, [1, 1, 640]> input_3_cast_fp16 = expand_dims(axes = input_3_axes_0, x = input_1_cast_fp16_cast_uint16)[name = tensor<string, []>("input_3_cast_fp16")];
14
+ tensor<int32, [1]> hx_1_axes_0 = const()[name = tensor<string, []>("hx_1_axes_0"), val = tensor<int32, [1]>([1])];
15
+ tensor<fp16, [2, 1, 640]> hx_1_cast_fp16 = expand_dims(axes = hx_1_axes_0, x = state_1)[name = tensor<string, []>("hx_1_cast_fp16")];
16
+ tensor<int32, [1]> hx_axes_0 = const()[name = tensor<string, []>("hx_axes_0"), val = tensor<int32, [1]>([1])];
17
+ tensor<fp16, [2, 1, 640]> hx_cast_fp16 = expand_dims(axes = hx_axes_0, x = state_2)[name = tensor<string, []>("hx_cast_fp16")];
18
+ tensor<int32, []> split_0_num_splits_0 = const()[name = tensor<string, []>("split_0_num_splits_0"), val = tensor<int32, []>(2)];
19
+ tensor<int32, []> split_0_axis_0 = const()[name = tensor<string, []>("split_0_axis_0"), val = tensor<int32, []>(0)];
20
+ tensor<fp16, [1, 1, 640]> split_0_cast_fp16_0, tensor<fp16, [1, 1, 640]> split_0_cast_fp16_1 = split(axis = split_0_axis_0, num_splits = split_0_num_splits_0, x = hx_1_cast_fp16)[name = tensor<string, []>("split_0_cast_fp16")];
21
+ tensor<int32, []> split_1_num_splits_0 = const()[name = tensor<string, []>("split_1_num_splits_0"), val = tensor<int32, []>(2)];
22
+ tensor<int32, []> split_1_axis_0 = const()[name = tensor<string, []>("split_1_axis_0"), val = tensor<int32, []>(0)];
23
+ tensor<fp16, [1, 1, 640]> split_1_cast_fp16_0, tensor<fp16, [1, 1, 640]> split_1_cast_fp16_1 = split(axis = split_1_axis_0, num_splits = split_1_num_splits_0, x = hx_cast_fp16)[name = tensor<string, []>("split_1_cast_fp16")];
24
+ tensor<int32, [1]> output_lstm_layer_0_lstm_h0_squeeze_axes_0 = const()[name = tensor<string, []>("output_lstm_layer_0_lstm_h0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
25
+ tensor<fp16, [1, 640]> output_lstm_layer_0_lstm_h0_squeeze_cast_fp16 = squeeze(axes = output_lstm_layer_0_lstm_h0_squeeze_axes_0, x = split_0_cast_fp16_0)[name = tensor<string, []>("output_lstm_layer_0_lstm_h0_squeeze_cast_fp16")];
26
+ tensor<int32, [1]> output_lstm_layer_0_lstm_c0_squeeze_axes_0 = const()[name = tensor<string, []>("output_lstm_layer_0_lstm_c0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
27
+ tensor<fp16, [1, 640]> output_lstm_layer_0_lstm_c0_squeeze_cast_fp16 = squeeze(axes = output_lstm_layer_0_lstm_c0_squeeze_axes_0, x = split_1_cast_fp16_0)[name = tensor<string, []>("output_lstm_layer_0_lstm_c0_squeeze_cast_fp16")];
28
+ tensor<string, []> output_lstm_layer_0_direction_0 = const()[name = tensor<string, []>("output_lstm_layer_0_direction_0"), val = tensor<string, []>("forward")];
29
+ tensor<bool, []> output_lstm_layer_0_output_sequence_0 = const()[name = tensor<string, []>("output_lstm_layer_0_output_sequence_0"), val = tensor<bool, []>(true)];
30
+ tensor<string, []> output_lstm_layer_0_recurrent_activation_0 = const()[name = tensor<string, []>("output_lstm_layer_0_recurrent_activation_0"), val = tensor<string, []>("sigmoid")];
31
+ tensor<string, []> output_lstm_layer_0_cell_activation_0 = const()[name = tensor<string, []>("output_lstm_layer_0_cell_activation_0"), val = tensor<string, []>("tanh")];
32
+ tensor<string, []> output_lstm_layer_0_activation_0 = const()[name = tensor<string, []>("output_lstm_layer_0_activation_0"), val = tensor<string, []>("tanh")];
33
+ tensor<fp16, [2560, 640]> concat_1_to_fp16 = const()[name = tensor<string, []>("concat_1_to_fp16"), val = tensor<fp16, [2560, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1312128)))];
34
+ tensor<fp16, [2560, 640]> concat_2_to_fp16 = const()[name = tensor<string, []>("concat_2_to_fp16"), val = tensor<fp16, [2560, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4588992)))];
35
+ tensor<fp16, [2560]> concat_0_to_fp16 = const()[name = tensor<string, []>("concat_0_to_fp16"), val = tensor<fp16, [2560]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(7865856)))];
36
+ tensor<fp16, [1, 1, 640]> output_lstm_layer_0_cast_fp16_0, tensor<fp16, [1, 640]> output_lstm_layer_0_cast_fp16_1, tensor<fp16, [1, 640]> output_lstm_layer_0_cast_fp16_2 = lstm(activation = output_lstm_layer_0_activation_0, bias = concat_0_to_fp16, cell_activation = output_lstm_layer_0_cell_activation_0, direction = output_lstm_layer_0_direction_0, initial_c = output_lstm_layer_0_lstm_c0_squeeze_cast_fp16, initial_h = output_lstm_layer_0_lstm_h0_squeeze_cast_fp16, output_sequence = output_lstm_layer_0_output_sequence_0, recurrent_activation = output_lstm_layer_0_recurrent_activation_0, weight_hh = concat_2_to_fp16, weight_ih = concat_1_to_fp16, x = input_3_cast_fp16)[name = tensor<string, []>("output_lstm_layer_0_cast_fp16")];
37
+ tensor<int32, [1]> output_lstm_h0_squeeze_axes_0 = const()[name = tensor<string, []>("output_lstm_h0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
38
+ tensor<fp16, [1, 640]> output_lstm_h0_squeeze_cast_fp16 = squeeze(axes = output_lstm_h0_squeeze_axes_0, x = split_0_cast_fp16_1)[name = tensor<string, []>("output_lstm_h0_squeeze_cast_fp16")];
39
+ tensor<int32, [1]> output_lstm_c0_squeeze_axes_0 = const()[name = tensor<string, []>("output_lstm_c0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
40
+ tensor<fp16, [1, 640]> output_lstm_c0_squeeze_cast_fp16 = squeeze(axes = output_lstm_c0_squeeze_axes_0, x = split_1_cast_fp16_1)[name = tensor<string, []>("output_lstm_c0_squeeze_cast_fp16")];
41
+ tensor<string, []> output_direction_0 = const()[name = tensor<string, []>("output_direction_0"), val = tensor<string, []>("forward")];
42
+ tensor<bool, []> output_output_sequence_0 = const()[name = tensor<string, []>("output_output_sequence_0"), val = tensor<bool, []>(true)];
43
+ tensor<string, []> output_recurrent_activation_0 = const()[name = tensor<string, []>("output_recurrent_activation_0"), val = tensor<string, []>("sigmoid")];
44
+ tensor<string, []> output_cell_activation_0 = const()[name = tensor<string, []>("output_cell_activation_0"), val = tensor<string, []>("tanh")];
45
+ tensor<string, []> output_activation_0 = const()[name = tensor<string, []>("output_activation_0"), val = tensor<string, []>("tanh")];
46
+ tensor<fp16, [2560, 640]> concat_4_to_fp16 = const()[name = tensor<string, []>("concat_4_to_fp16"), val = tensor<fp16, [2560, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(7871040)))];
47
+ tensor<fp16, [2560, 640]> concat_5_to_fp16 = const()[name = tensor<string, []>("concat_5_to_fp16"), val = tensor<fp16, [2560, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11147904)))];
48
+ tensor<fp16, [2560]> concat_3_to_fp16 = const()[name = tensor<string, []>("concat_3_to_fp16"), val = tensor<fp16, [2560]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14424768)))];
49
+ tensor<fp16, [1, 1, 640]> output_cast_fp16_0, tensor<fp16, [1, 640]> output_cast_fp16_1, tensor<fp16, [1, 640]> output_cast_fp16_2 = lstm(activation = output_activation_0, bias = concat_3_to_fp16, cell_activation = output_cell_activation_0, direction = output_direction_0, initial_c = output_lstm_c0_squeeze_cast_fp16, initial_h = output_lstm_h0_squeeze_cast_fp16, output_sequence = output_output_sequence_0, recurrent_activation = output_recurrent_activation_0, weight_hh = concat_5_to_fp16, weight_ih = concat_4_to_fp16, x = output_lstm_layer_0_cast_fp16_0)[name = tensor<string, []>("output_cast_fp16")];
50
+ tensor<int32, []> var_32_axis_0 = const()[name = tensor<string, []>("op_32_axis_0"), val = tensor<int32, []>(0)];
51
+ tensor<fp16, [2, 1, 640]> var_32_cast_fp16 = stack(axis = var_32_axis_0, values = (output_lstm_layer_0_cast_fp16_1, output_cast_fp16_1))[name = tensor<string, []>("op_32_cast_fp16")];
52
+ tensor<int32, []> var_33_axis_0 = const()[name = tensor<string, []>("op_33_axis_0"), val = tensor<int32, []>(0)];
53
+ tensor<fp16, [2, 1, 640]> var_33_cast_fp16 = stack(axis = var_33_axis_0, values = (output_lstm_layer_0_cast_fp16_2, output_cast_fp16_2))[name = tensor<string, []>("op_33_cast_fp16")];
54
+ tensor<int32, [1]> input_axes_0 = const()[name = tensor<string, []>("input_axes_0"), val = tensor<int32, [1]>([1])];
55
+ tensor<fp16, [1, 640]> input_cast_fp16 = squeeze(axes = input_axes_0, x = output_cast_fp16_0)[name = tensor<string, []>("input_cast_fp16")];
56
+ tensor<int32, [1]> var_35_axes_0 = const()[name = tensor<string, []>("op_35_axes_0"), val = tensor<int32, [1]>([1])];
57
+ tensor<fp16, [2, 640]> new_state_1 = squeeze(axes = var_35_axes_0, x = var_32_cast_fp16)[name = tensor<string, []>("op_35_cast_fp16")];
58
+ tensor<int32, [1]> var_36_axes_0 = const()[name = tensor<string, []>("op_36_axes_0"), val = tensor<int32, [1]>([1])];
59
+ tensor<fp16, [2, 640]> new_state_2 = squeeze(axes = var_36_axes_0, x = var_33_cast_fp16)[name = tensor<string, []>("op_36_cast_fp16")];
60
+ tensor<fp16, [640, 640]> joint_projection_weight_to_fp16 = const()[name = tensor<string, []>("joint_projection_weight_to_fp16"), val = tensor<fp16, [640, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14429952)))];
61
+ tensor<fp16, [640]> joint_projection_bias_to_fp16 = const()[name = tensor<string, []>("joint_projection_bias_to_fp16"), val = tensor<fp16, [640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(15249216)))];
62
+ tensor<fp16, [1, 640]> decoder_output_projected = linear(bias = joint_projection_bias_to_fp16, weight = joint_projection_weight_to_fp16, x = input_cast_fp16)[name = tensor<string, []>("linear_0_cast_fp16")];
63
+ } -> (decoder_output_projected, new_state_1, new_state_2);
64
+ }
nvidia_parakeet-v2/TextDecoder.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f39f483dcf06a76b7806a987b8c9309258aca550242e6b94c28b07df3122253c
3
+ size 15250560