Add nvidia_parakeet-v3
Browse files- nvidia_parakeet-v3/AudioEncoder.mlmodelc/LICENSE_NOTICE.txt +7 -0
- nvidia_parakeet-v3/AudioEncoder.mlmodelc/analytics/coremldata.bin +3 -0
- nvidia_parakeet-v3/AudioEncoder.mlmodelc/coremldata.bin +3 -0
- nvidia_parakeet-v3/AudioEncoder.mlmodelc/metadata.json +96 -0
- nvidia_parakeet-v3/AudioEncoder.mlmodelc/model.mil +0 -0
- nvidia_parakeet-v3/AudioEncoder.mlmodelc/weights/weight.bin +3 -0
- nvidia_parakeet-v3/LICENSE_NOTICE.txt +7 -0
- nvidia_parakeet-v3/MelSpectrogram.mlmodelc/LICENSE_NOTICE.txt +7 -0
- nvidia_parakeet-v3/MelSpectrogram.mlmodelc/analytics/coremldata.bin +3 -0
- nvidia_parakeet-v3/MelSpectrogram.mlmodelc/coremldata.bin +3 -0
- nvidia_parakeet-v3/MelSpectrogram.mlmodelc/metadata.json +77 -0
- nvidia_parakeet-v3/MelSpectrogram.mlmodelc/model.mil +81 -0
- nvidia_parakeet-v3/MelSpectrogram.mlmodelc/weights/weight.bin +3 -0
- nvidia_parakeet-v3/MultimodalLogits.mlmodelc/LICENSE_NOTICE.txt +7 -0
- nvidia_parakeet-v3/MultimodalLogits.mlmodelc/analytics/coremldata.bin +3 -0
- nvidia_parakeet-v3/MultimodalLogits.mlmodelc/coremldata.bin +3 -0
- nvidia_parakeet-v3/MultimodalLogits.mlmodelc/metadata.json +75 -0
- nvidia_parakeet-v3/MultimodalLogits.mlmodelc/model.mil +15 -0
- nvidia_parakeet-v3/MultimodalLogits.mlmodelc/weights/weight.bin +3 -0
- nvidia_parakeet-v3/TextDecoder.mlmodelc/LICENSE_NOTICE.txt +7 -0
- nvidia_parakeet-v3/TextDecoder.mlmodelc/analytics/coremldata.bin +3 -0
- nvidia_parakeet-v3/TextDecoder.mlmodelc/coremldata.bin +3 -0
- nvidia_parakeet-v3/TextDecoder.mlmodelc/metadata.json +111 -0
- nvidia_parakeet-v3/TextDecoder.mlmodelc/model.mil +73 -0
- nvidia_parakeet-v3/TextDecoder.mlmodelc/weights/weight.bin +3 -0
nvidia_parakeet-v3/AudioEncoder.mlmodelc/LICENSE_NOTICE.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Argmax proprietary and confidential. Under NDA.
|
2 |
+
|
3 |
+
Copyright 2024 Argmax, Inc. All rights reserved.
|
4 |
+
|
5 |
+
Unauthorized access, copying, use, distribution, and or commercialization of this file, via any medium or means is strictly prohibited.
|
6 |
+
|
7 |
+
Please contact Argmax for licensing information at [email protected].
|
nvidia_parakeet-v3/AudioEncoder.mlmodelc/analytics/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d7fb2cdf39ba37f092cbf481ff457b8ff84746012e4402542cd712d69a1326a
|
3 |
+
size 243
|
nvidia_parakeet-v3/AudioEncoder.mlmodelc/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c3a319786d1956fe24eba520a941c7e5ab8486f14558dd895d6bd9c95f45bb1
|
3 |
+
size 493
|
nvidia_parakeet-v3/AudioEncoder.mlmodelc/metadata.json
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"metadataOutputVersion" : "3.0",
|
4 |
+
"storagePrecision" : "Float16",
|
5 |
+
"outputSchema" : [
|
6 |
+
{
|
7 |
+
"hasShapeFlexibility" : "0",
|
8 |
+
"isOptional" : "0",
|
9 |
+
"dataType" : "Float16",
|
10 |
+
"formattedType" : "MultiArray (Float16 1 × 1024 × 1 × 188)",
|
11 |
+
"shortDescription" : "",
|
12 |
+
"shape" : "[1, 1024, 1, 188]",
|
13 |
+
"name" : "encoder_output_embeds",
|
14 |
+
"type" : "MultiArray"
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"hasShapeFlexibility" : "0",
|
18 |
+
"isOptional" : "0",
|
19 |
+
"dataType" : "Float16",
|
20 |
+
"formattedType" : "MultiArray (Float16 1 × 640 × 1 × 188)",
|
21 |
+
"shortDescription" : "",
|
22 |
+
"shape" : "[1, 640, 1, 188]",
|
23 |
+
"name" : "joint_projected_encoder_output_embeds",
|
24 |
+
"type" : "MultiArray"
|
25 |
+
}
|
26 |
+
],
|
27 |
+
"modelParameters" : [
|
28 |
+
|
29 |
+
],
|
30 |
+
"specificationVersion" : 8,
|
31 |
+
"mlProgramOperationTypeHistogram" : {
|
32 |
+
"Ios16.silu" : 72,
|
33 |
+
"Ios17.mul" : 73,
|
34 |
+
"Split" : 24,
|
35 |
+
"Ios17.transpose" : 1,
|
36 |
+
"Ios17.sub" : 1,
|
37 |
+
"Ios17.matmul" : 72,
|
38 |
+
"Ios17.conv" : 295,
|
39 |
+
"Ios16.sigmoid" : 24,
|
40 |
+
"Ios17.add" : 168,
|
41 |
+
"Ios17.sliceByIndex" : 48,
|
42 |
+
"Ios17.batchNorm" : 120,
|
43 |
+
"Ios16.relu" : 3,
|
44 |
+
"Ios16.softmax" : 24,
|
45 |
+
"Ios17.reshape" : 193,
|
46 |
+
"Ios17.layerNorm" : 120,
|
47 |
+
"Pad" : 24
|
48 |
+
},
|
49 |
+
"computePrecision" : "Mixed (Float16, Int32)",
|
50 |
+
"isUpdatable" : "0",
|
51 |
+
"stateSchema" : [
|
52 |
+
|
53 |
+
],
|
54 |
+
"availability" : {
|
55 |
+
"macOS" : "14.0",
|
56 |
+
"tvOS" : "17.0",
|
57 |
+
"visionOS" : "1.0",
|
58 |
+
"watchOS" : "10.0",
|
59 |
+
"iOS" : "17.0",
|
60 |
+
"macCatalyst" : "17.0"
|
61 |
+
},
|
62 |
+
"modelType" : {
|
63 |
+
"name" : "MLModelType_mlProgram"
|
64 |
+
},
|
65 |
+
"userDefinedMetadata" : {
|
66 |
+
"com.github.apple.coremltools.conversion_date" : "2025-08-14",
|
67 |
+
"com.github.apple.coremltools.source" : "torch==2.5.0",
|
68 |
+
"com.github.apple.coremltools.version" : "9.0b1",
|
69 |
+
"com.github.apple.coremltools.source_dialect" : "TorchScript"
|
70 |
+
},
|
71 |
+
"inputSchema" : [
|
72 |
+
{
|
73 |
+
"hasShapeFlexibility" : "0",
|
74 |
+
"isOptional" : "0",
|
75 |
+
"dataType" : "Float16",
|
76 |
+
"formattedType" : "MultiArray (Float16 1 × 1 × 1501 × 128)",
|
77 |
+
"shortDescription" : "",
|
78 |
+
"shape" : "[1, 1, 1501, 128]",
|
79 |
+
"name" : "melspectrogram_features",
|
80 |
+
"type" : "MultiArray"
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"hasShapeFlexibility" : "0",
|
84 |
+
"isOptional" : "0",
|
85 |
+
"dataType" : "Float16",
|
86 |
+
"formattedType" : "MultiArray (Float16 1 × 1 × 1 × 1)",
|
87 |
+
"shortDescription" : "",
|
88 |
+
"shape" : "[1, 1, 1, 1]",
|
89 |
+
"name" : "input_1",
|
90 |
+
"type" : "MultiArray"
|
91 |
+
}
|
92 |
+
],
|
93 |
+
"generatedClassName" : "AudioEncoder",
|
94 |
+
"method" : "predict"
|
95 |
+
}
|
96 |
+
]
|
nvidia_parakeet-v3/AudioEncoder.mlmodelc/model.mil
ADDED
The diff for this file is too large to render.
See raw diff
|
|
nvidia_parakeet-v3/AudioEncoder.mlmodelc/weights/weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f95d33a2f1582d171ad8dacdb724d1d96a8566c958044c61419f1b90d307074b
|
3 |
+
size 1219841984
|
nvidia_parakeet-v3/LICENSE_NOTICE.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Argmax proprietary and confidential. Under NDA.
|
2 |
+
|
3 |
+
Copyright 2024 Argmax, Inc. All rights reserved.
|
4 |
+
|
5 |
+
Unauthorized access, copying, use, distribution, and or commercialization of this file, via any medium or means is strictly prohibited.
|
6 |
+
|
7 |
+
Please contact Argmax for licensing information at [email protected].
|
nvidia_parakeet-v3/MelSpectrogram.mlmodelc/LICENSE_NOTICE.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Argmax proprietary and confidential. Under NDA.
|
2 |
+
|
3 |
+
Copyright 2024 Argmax, Inc. All rights reserved.
|
4 |
+
|
5 |
+
Unauthorized access, copying, use, distribution, and or commercialization of this file, via any medium or means is strictly prohibited.
|
6 |
+
|
7 |
+
Please contact Argmax for licensing information at [email protected].
|
nvidia_parakeet-v3/MelSpectrogram.mlmodelc/analytics/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e7d1205a095f5ebc8372aec82b911979c3a010c37bd70fd2f546a21dbdce15c
|
3 |
+
size 243
|
nvidia_parakeet-v3/MelSpectrogram.mlmodelc/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f2a333c9134ecf776a755d626cb782de9fd65a4520bc18668432c21da75a625
|
3 |
+
size 392
|
nvidia_parakeet-v3/MelSpectrogram.mlmodelc/metadata.json
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"metadataOutputVersion" : "3.0",
|
4 |
+
"storagePrecision" : "Mixed (Float16, Palettized (6 bits))",
|
5 |
+
"outputSchema" : [
|
6 |
+
{
|
7 |
+
"hasShapeFlexibility" : "0",
|
8 |
+
"isOptional" : "0",
|
9 |
+
"dataType" : "Float16",
|
10 |
+
"formattedType" : "MultiArray (Float16 1 × 1 × 1501 × 128)",
|
11 |
+
"shortDescription" : "",
|
12 |
+
"shape" : "[1, 1, 1501, 128]",
|
13 |
+
"name" : "melspectrogram_features",
|
14 |
+
"type" : "MultiArray"
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"modelParameters" : [
|
18 |
+
|
19 |
+
],
|
20 |
+
"specificationVersion" : 8,
|
21 |
+
"mlProgramOperationTypeHistogram" : {
|
22 |
+
"Ios17.mul" : 2,
|
23 |
+
"Ios17.sqrt" : 1,
|
24 |
+
"Ios17.square" : 3,
|
25 |
+
"Ios17.transpose" : 1,
|
26 |
+
"Ios17.sub" : 2,
|
27 |
+
"Ios16.constexprLutToDense" : 3,
|
28 |
+
"Ios17.conv" : 2,
|
29 |
+
"Ios17.matmul" : 1,
|
30 |
+
"Ios17.log" : 1,
|
31 |
+
"Ios17.sliceByIndex" : 2,
|
32 |
+
"Ios17.add" : 3,
|
33 |
+
"Ios16.reduceMean" : 2,
|
34 |
+
"Ios17.realDiv" : 1,
|
35 |
+
"Ios17.expandDims" : 4,
|
36 |
+
"Ios17.squeeze" : 2,
|
37 |
+
"Ios17.reshape" : 2,
|
38 |
+
"Pad" : 2
|
39 |
+
},
|
40 |
+
"computePrecision" : "Mixed (Float16, Float32, Int32)",
|
41 |
+
"isUpdatable" : "0",
|
42 |
+
"stateSchema" : [
|
43 |
+
|
44 |
+
],
|
45 |
+
"availability" : {
|
46 |
+
"macOS" : "14.0",
|
47 |
+
"tvOS" : "17.0",
|
48 |
+
"visionOS" : "1.0",
|
49 |
+
"watchOS" : "10.0",
|
50 |
+
"iOS" : "17.0",
|
51 |
+
"macCatalyst" : "17.0"
|
52 |
+
},
|
53 |
+
"modelType" : {
|
54 |
+
"name" : "MLModelType_mlProgram"
|
55 |
+
},
|
56 |
+
"userDefinedMetadata" : {
|
57 |
+
"com.github.apple.coremltools.conversion_date" : "2025-08-14",
|
58 |
+
"com.github.apple.coremltools.source" : "torch==2.5.0",
|
59 |
+
"com.github.apple.coremltools.version" : "9.0b1",
|
60 |
+
"com.github.apple.coremltools.source_dialect" : "TorchScript"
|
61 |
+
},
|
62 |
+
"inputSchema" : [
|
63 |
+
{
|
64 |
+
"hasShapeFlexibility" : "0",
|
65 |
+
"isOptional" : "0",
|
66 |
+
"dataType" : "Float16",
|
67 |
+
"formattedType" : "MultiArray (Float16 240000)",
|
68 |
+
"shortDescription" : "",
|
69 |
+
"shape" : "[240000]",
|
70 |
+
"name" : "audio",
|
71 |
+
"type" : "MultiArray"
|
72 |
+
}
|
73 |
+
],
|
74 |
+
"generatedClassName" : "MelSpectrogram_6_bit",
|
75 |
+
"method" : "predict"
|
76 |
+
}
|
77 |
+
]
|
nvidia_parakeet-v3/MelSpectrogram.mlmodelc/model.mil
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
program(1.0)
|
2 |
+
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3401.3.1"}, {"coremlc-version", "3401.4.1"}})]
|
3 |
+
{
|
4 |
+
func main<ios17>(tensor<fp16, [240000]> audio) {
|
5 |
+
tensor<int32, [1]> var_8_begin_0 = const()[name = tensor<string, []>("op_8_begin_0"), val = tensor<int32, [1]>([1])];
|
6 |
+
tensor<int32, [1]> var_8_end_0 = const()[name = tensor<string, []>("op_8_end_0"), val = tensor<int32, [1]>([240000])];
|
7 |
+
tensor<bool, [1]> var_8_end_mask_0 = const()[name = tensor<string, []>("op_8_end_mask_0"), val = tensor<bool, [1]>([true])];
|
8 |
+
tensor<fp16, [239999]> var_8_cast_fp16 = slice_by_index(begin = var_8_begin_0, end = var_8_end_0, end_mask = var_8_end_mask_0, x = audio)[name = tensor<string, []>("op_8_cast_fp16")];
|
9 |
+
tensor<int32, [1]> var_13_begin_0 = const()[name = tensor<string, []>("op_13_begin_0"), val = tensor<int32, [1]>([0])];
|
10 |
+
tensor<int32, [1]> var_13_end_0 = const()[name = tensor<string, []>("op_13_end_0"), val = tensor<int32, [1]>([239999])];
|
11 |
+
tensor<bool, [1]> var_13_end_mask_0 = const()[name = tensor<string, []>("op_13_end_mask_0"), val = tensor<bool, [1]>([false])];
|
12 |
+
tensor<fp16, [239999]> var_13_cast_fp16 = slice_by_index(begin = var_13_begin_0, end = var_13_end_0, end_mask = var_13_end_mask_0, x = audio)[name = tensor<string, []>("op_13_cast_fp16")];
|
13 |
+
tensor<fp16, []> var_14_to_fp16 = const()[name = tensor<string, []>("op_14_to_fp16"), val = tensor<fp16, []>(0x1.f0cp-1)];
|
14 |
+
tensor<fp16, [239999]> var_15_cast_fp16 = mul(x = var_13_cast_fp16, y = var_14_to_fp16)[name = tensor<string, []>("op_15_cast_fp16")];
|
15 |
+
tensor<fp16, [239999]> input_1_cast_fp16 = sub(x = var_8_cast_fp16, y = var_15_cast_fp16)[name = tensor<string, []>("input_1_cast_fp16")];
|
16 |
+
tensor<int32, [2]> input_3_pad_0 = const()[name = tensor<string, []>("input_3_pad_0"), val = tensor<int32, [2]>([1, 0])];
|
17 |
+
tensor<string, []> input_3_mode_0 = const()[name = tensor<string, []>("input_3_mode_0"), val = tensor<string, []>("constant")];
|
18 |
+
tensor<fp16, []> const_0_to_fp16 = const()[name = tensor<string, []>("const_0_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
|
19 |
+
tensor<fp16, [240000]> input_3_cast_fp16 = pad(constant_val = const_0_to_fp16, mode = input_3_mode_0, pad = input_3_pad_0, x = input_1_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
|
20 |
+
tensor<int32, [3]> var_30 = const()[name = tensor<string, []>("op_30"), val = tensor<int32, [3]>([1, 1, 240000])];
|
21 |
+
tensor<fp16, [1, 1, 240000]> input_5_cast_fp16 = reshape(shape = var_30, x = input_3_cast_fp16)[name = tensor<string, []>("input_5_cast_fp16")];
|
22 |
+
tensor<int32, [6]> input_7_pad_0 = const()[name = tensor<string, []>("input_7_pad_0"), val = tensor<int32, [6]>([0, 0, 0, 0, 256, 256])];
|
23 |
+
tensor<string, []> input_7_mode_0 = const()[name = tensor<string, []>("input_7_mode_0"), val = tensor<string, []>("reflect")];
|
24 |
+
tensor<fp16, []> const_2_to_fp16 = const()[name = tensor<string, []>("const_2_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
|
25 |
+
tensor<fp16, [1, 1, 240512]> input_7_cast_fp16 = pad(constant_val = const_2_to_fp16, mode = input_7_mode_0, pad = input_7_pad_0, x = input_5_cast_fp16)[name = tensor<string, []>("input_7_cast_fp16")];
|
26 |
+
tensor<int32, [1]> var_42 = const()[name = tensor<string, []>("op_42"), val = tensor<int32, [1]>([240512])];
|
27 |
+
tensor<fp16, [240512]> input_cast_fp16 = reshape(shape = var_42, x = input_7_cast_fp16)[name = tensor<string, []>("input_cast_fp16")];
|
28 |
+
tensor<int32, [1]> expand_dims_0_axes_0 = const()[name = tensor<string, []>("expand_dims_0_axes_0"), val = tensor<int32, [1]>([0])];
|
29 |
+
tensor<fp16, [1, 240512]> expand_dims_0_cast_fp16 = expand_dims(axes = expand_dims_0_axes_0, x = input_cast_fp16)[name = tensor<string, []>("expand_dims_0_cast_fp16")];
|
30 |
+
tensor<int32, [1]> expand_dims_3 = const()[name = tensor<string, []>("expand_dims_3"), val = tensor<int32, [1]>([160])];
|
31 |
+
tensor<int32, [1]> expand_dims_4_axes_0 = const()[name = tensor<string, []>("expand_dims_4_axes_0"), val = tensor<int32, [1]>([1])];
|
32 |
+
tensor<fp16, [1, 1, 240512]> expand_dims_4_cast_fp16 = expand_dims(axes = expand_dims_4_axes_0, x = expand_dims_0_cast_fp16)[name = tensor<string, []>("expand_dims_4_cast_fp16")];
|
33 |
+
tensor<string, []> conv_0_pad_type_0 = const()[name = tensor<string, []>("conv_0_pad_type_0"), val = tensor<string, []>("valid")];
|
34 |
+
tensor<int32, [2]> conv_0_pad_0 = const()[name = tensor<string, []>("conv_0_pad_0"), val = tensor<int32, [2]>([0, 0])];
|
35 |
+
tensor<int32, [1]> conv_0_dilations_0 = const()[name = tensor<string, []>("conv_0_dilations_0"), val = tensor<int32, [1]>([1])];
|
36 |
+
tensor<int32, []> conv_0_groups_0 = const()[name = tensor<string, []>("conv_0_groups_0"), val = tensor<int32, []>(1)];
|
37 |
+
tensor<fp16, [257, 1, 512]> expand_dims_1_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [98688]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98816))), name = tensor<string, []>("expand_dims_1_to_fp16_palettized"), shape = tensor<uint32, [3]>([257, 1, 512])];
|
38 |
+
tensor<fp16, [1, 257, 1501]> conv_0_cast_fp16 = conv(dilations = conv_0_dilations_0, groups = conv_0_groups_0, pad = conv_0_pad_0, pad_type = conv_0_pad_type_0, strides = expand_dims_3, weight = expand_dims_1_to_fp16_palettized, x = expand_dims_4_cast_fp16)[name = tensor<string, []>("conv_0_cast_fp16")];
|
39 |
+
tensor<string, []> conv_1_pad_type_0 = const()[name = tensor<string, []>("conv_1_pad_type_0"), val = tensor<string, []>("valid")];
|
40 |
+
tensor<int32, [2]> conv_1_pad_0 = const()[name = tensor<string, []>("conv_1_pad_0"), val = tensor<int32, [2]>([0, 0])];
|
41 |
+
tensor<int32, [1]> conv_1_dilations_0 = const()[name = tensor<string, []>("conv_1_dilations_0"), val = tensor<int32, [1]>([1])];
|
42 |
+
tensor<int32, []> conv_1_groups_0 = const()[name = tensor<string, []>("conv_1_groups_0"), val = tensor<int32, []>(1)];
|
43 |
+
tensor<fp16, [257, 1, 512]> expand_dims_2_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [98688]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(99008))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(197760))), name = tensor<string, []>("expand_dims_2_to_fp16_palettized"), shape = tensor<uint32, [3]>([257, 1, 512])];
|
44 |
+
tensor<fp16, [1, 257, 1501]> conv_1_cast_fp16 = conv(dilations = conv_1_dilations_0, groups = conv_1_groups_0, pad = conv_1_pad_0, pad_type = conv_1_pad_type_0, strides = expand_dims_3, weight = expand_dims_2_to_fp16_palettized, x = expand_dims_4_cast_fp16)[name = tensor<string, []>("conv_1_cast_fp16")];
|
45 |
+
tensor<int32, [1]> squeeze_0_axes_0 = const()[name = tensor<string, []>("squeeze_0_axes_0"), val = tensor<int32, [1]>([0])];
|
46 |
+
tensor<fp16, [257, 1501]> squeeze_0_cast_fp16 = squeeze(axes = squeeze_0_axes_0, x = conv_0_cast_fp16)[name = tensor<string, []>("squeeze_0_cast_fp16")];
|
47 |
+
tensor<int32, [1]> squeeze_1_axes_0 = const()[name = tensor<string, []>("squeeze_1_axes_0"), val = tensor<int32, [1]>([0])];
|
48 |
+
tensor<fp16, [257, 1501]> squeeze_1_cast_fp16 = squeeze(axes = squeeze_1_axes_0, x = conv_1_cast_fp16)[name = tensor<string, []>("squeeze_1_cast_fp16")];
|
49 |
+
tensor<fp16, [257, 1501]> square_1_cast_fp16 = square(x = squeeze_0_cast_fp16)[name = tensor<string, []>("square_1_cast_fp16")];
|
50 |
+
tensor<fp16, [257, 1501]> square_2_cast_fp16 = square(x = squeeze_1_cast_fp16)[name = tensor<string, []>("square_2_cast_fp16")];
|
51 |
+
tensor<fp16, [257, 1501]> add_1_cast_fp16 = add(x = square_1_cast_fp16, y = square_2_cast_fp16)[name = tensor<string, []>("add_1_cast_fp16")];
|
52 |
+
tensor<bool, []> mel_spec_1_transpose_x_0 = const()[name = tensor<string, []>("mel_spec_1_transpose_x_0"), val = tensor<bool, []>(false)];
|
53 |
+
tensor<bool, []> mel_spec_1_transpose_y_0 = const()[name = tensor<string, []>("mel_spec_1_transpose_y_0"), val = tensor<bool, []>(false)];
|
54 |
+
tensor<fp16, [128, 257]> mel_filters_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [24672]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(197952))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(222720))), name = tensor<string, []>("mel_filters_to_fp16_palettized"), shape = tensor<uint32, [2]>([128, 257])];
|
55 |
+
tensor<fp16, [128, 1501]> mel_spec_1_cast_fp16 = matmul(transpose_x = mel_spec_1_transpose_x_0, transpose_y = mel_spec_1_transpose_y_0, x = mel_filters_to_fp16_palettized, y = add_1_cast_fp16)[name = tensor<string, []>("mel_spec_1_cast_fp16")];
|
56 |
+
tensor<fp16, []> var_56_to_fp16 = const()[name = tensor<string, []>("op_56_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
57 |
+
tensor<fp16, [128, 1501]> mel_spec_3_cast_fp16 = add(x = mel_spec_1_cast_fp16, y = var_56_to_fp16)[name = tensor<string, []>("mel_spec_3_cast_fp16")];
|
58 |
+
tensor<fp32, []> mel_spec_5_epsilon_0 = const()[name = tensor<string, []>("mel_spec_5_epsilon_0"), val = tensor<fp32, []>(0x1p-149)];
|
59 |
+
tensor<fp16, [128, 1501]> mel_spec_5_cast_fp16 = log(epsilon = mel_spec_5_epsilon_0, x = mel_spec_3_cast_fp16)[name = tensor<string, []>("mel_spec_5_cast_fp16")];
|
60 |
+
tensor<int32, [1]> per_feature_mean_axes_0 = const()[name = tensor<string, []>("per_feature_mean_axes_0"), val = tensor<int32, [1]>([-1])];
|
61 |
+
tensor<bool, []> per_feature_mean_keep_dims_0 = const()[name = tensor<string, []>("per_feature_mean_keep_dims_0"), val = tensor<bool, []>(true)];
|
62 |
+
tensor<fp16, [128, 1]> per_feature_mean_cast_fp16 = reduce_mean(axes = per_feature_mean_axes_0, keep_dims = per_feature_mean_keep_dims_0, x = mel_spec_5_cast_fp16)[name = tensor<string, []>("per_feature_mean_cast_fp16")];
|
63 |
+
tensor<fp16, [128, 1501]> sub_0_cast_fp16 = sub(x = mel_spec_5_cast_fp16, y = per_feature_mean_cast_fp16)[name = tensor<string, []>("sub_0_cast_fp16")];
|
64 |
+
tensor<fp16, [128, 1501]> square_0_cast_fp16 = square(x = sub_0_cast_fp16)[name = tensor<string, []>("square_0_cast_fp16")];
|
65 |
+
tensor<int32, [1]> reduce_mean_1_axes_0 = const()[name = tensor<string, []>("reduce_mean_1_axes_0"), val = tensor<int32, [1]>([-1])];
|
66 |
+
tensor<bool, []> reduce_mean_1_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_1_keep_dims_0"), val = tensor<bool, []>(true)];
|
67 |
+
tensor<fp16, [128, 1]> reduce_mean_1_cast_fp16 = reduce_mean(axes = reduce_mean_1_axes_0, keep_dims = reduce_mean_1_keep_dims_0, x = square_0_cast_fp16)[name = tensor<string, []>("reduce_mean_1_cast_fp16")];
|
68 |
+
tensor<fp16, []> real_div_0_to_fp16 = const()[name = tensor<string, []>("real_div_0_to_fp16"), val = tensor<fp16, []>(0x1.004p+0)];
|
69 |
+
tensor<fp16, [128, 1]> mul_0_cast_fp16 = mul(x = reduce_mean_1_cast_fp16, y = real_div_0_to_fp16)[name = tensor<string, []>("mul_0_cast_fp16")];
|
70 |
+
tensor<fp16, [128, 1]> sqrt_0_cast_fp16 = sqrt(x = mul_0_cast_fp16)[name = tensor<string, []>("sqrt_0_cast_fp16")];
|
71 |
+
tensor<fp16, []> var_70_to_fp16 = const()[name = tensor<string, []>("op_70_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
72 |
+
tensor<fp16, [128, 1]> per_feature_std_cast_fp16 = add(x = sqrt_0_cast_fp16, y = var_70_to_fp16)[name = tensor<string, []>("per_feature_std_cast_fp16")];
|
73 |
+
tensor<fp16, [128, 1501]> mel_spec_cast_fp16 = real_div(x = sub_0_cast_fp16, y = per_feature_std_cast_fp16)[name = tensor<string, []>("mel_spec_cast_fp16")];
|
74 |
+
tensor<int32, [2]> var_75_perm_0 = const()[name = tensor<string, []>("op_75_perm_0"), val = tensor<int32, [2]>([1, 0])];
|
75 |
+
tensor<int32, [1]> var_77_axes_0 = const()[name = tensor<string, []>("op_77_axes_0"), val = tensor<int32, [1]>([0])];
|
76 |
+
tensor<fp16, [1501, 128]> var_75_cast_fp16 = transpose(perm = var_75_perm_0, x = mel_spec_cast_fp16)[name = tensor<string, []>("transpose_0")];
|
77 |
+
tensor<fp16, [1, 1501, 128]> var_77_cast_fp16 = expand_dims(axes = var_77_axes_0, x = var_75_cast_fp16)[name = tensor<string, []>("op_77_cast_fp16")];
|
78 |
+
tensor<int32, [1]> var_79_axes_0 = const()[name = tensor<string, []>("op_79_axes_0"), val = tensor<int32, [1]>([1])];
|
79 |
+
tensor<fp16, [1, 1, 1501, 128]> melspectrogram_features = expand_dims(axes = var_79_axes_0, x = var_77_cast_fp16)[name = tensor<string, []>("op_79_cast_fp16")];
|
80 |
+
} -> (melspectrogram_features);
|
81 |
+
}
|
nvidia_parakeet-v3/MelSpectrogram.mlmodelc/weights/weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fdb3127d090c4856df950d5e6f059d1936ddd121a4f9da7362ed7c5ef7b189b3
|
3 |
+
size 222912
|
nvidia_parakeet-v3/MultimodalLogits.mlmodelc/LICENSE_NOTICE.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Argmax proprietary and confidential. Under NDA.
|
2 |
+
|
3 |
+
Copyright 2024 Argmax, Inc. All rights reserved.
|
4 |
+
|
5 |
+
Unauthorized access, copying, use, distribution, and or commercialization of this file, via any medium or means is strictly prohibited.
|
6 |
+
|
7 |
+
Please contact Argmax for licensing information at [email protected].
|
nvidia_parakeet-v3/MultimodalLogits.mlmodelc/analytics/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbb1fc22c1a4b16fff489b9424efcf0112cd0223ca427621aca45ce744f3ff8d
|
3 |
+
size 243
|
nvidia_parakeet-v3/MultimodalLogits.mlmodelc/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a0441fb4458b0ddb433752446048f5ff3fe681af731833b96a8fe8f80d0521b
|
3 |
+
size 432
|
nvidia_parakeet-v3/MultimodalLogits.mlmodelc/metadata.json
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"metadataOutputVersion" : "3.0",
|
4 |
+
"storagePrecision" : "Float16",
|
5 |
+
"outputSchema" : [
|
6 |
+
{
|
7 |
+
"hasShapeFlexibility" : "0",
|
8 |
+
"isOptional" : "0",
|
9 |
+
"dataType" : "Float16",
|
10 |
+
"formattedType" : "MultiArray (Float16 1 × 8198)",
|
11 |
+
"shortDescription" : "",
|
12 |
+
"shape" : "[1, 8198]",
|
13 |
+
"name" : "logits",
|
14 |
+
"type" : "MultiArray"
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"modelParameters" : [
|
18 |
+
|
19 |
+
],
|
20 |
+
"specificationVersion" : 8,
|
21 |
+
"mlProgramOperationTypeHistogram" : {
|
22 |
+
"Ios16.softmax" : 1,
|
23 |
+
"Ios17.log" : 1,
|
24 |
+
"Ios17.linear" : 1,
|
25 |
+
"Ios17.add" : 1,
|
26 |
+
"Ios16.relu" : 1
|
27 |
+
},
|
28 |
+
"computePrecision" : "Mixed (Float16, Float32, Int32)",
|
29 |
+
"isUpdatable" : "0",
|
30 |
+
"stateSchema" : [
|
31 |
+
|
32 |
+
],
|
33 |
+
"availability" : {
|
34 |
+
"macOS" : "14.0",
|
35 |
+
"tvOS" : "17.0",
|
36 |
+
"visionOS" : "1.0",
|
37 |
+
"watchOS" : "10.0",
|
38 |
+
"iOS" : "17.0",
|
39 |
+
"macCatalyst" : "17.0"
|
40 |
+
},
|
41 |
+
"modelType" : {
|
42 |
+
"name" : "MLModelType_mlProgram"
|
43 |
+
},
|
44 |
+
"userDefinedMetadata" : {
|
45 |
+
"com.github.apple.coremltools.conversion_date" : "2025-08-14",
|
46 |
+
"com.github.apple.coremltools.source" : "torch==2.5.0",
|
47 |
+
"com.github.apple.coremltools.version" : "9.0b1",
|
48 |
+
"com.github.apple.coremltools.source_dialect" : "TorchScript"
|
49 |
+
},
|
50 |
+
"inputSchema" : [
|
51 |
+
{
|
52 |
+
"hasShapeFlexibility" : "0",
|
53 |
+
"isOptional" : "0",
|
54 |
+
"dataType" : "Float16",
|
55 |
+
"formattedType" : "MultiArray (Float16 1 × 640)",
|
56 |
+
"shortDescription" : "",
|
57 |
+
"shape" : "[1, 640]",
|
58 |
+
"name" : "encoder_output_projected",
|
59 |
+
"type" : "MultiArray"
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"hasShapeFlexibility" : "0",
|
63 |
+
"isOptional" : "0",
|
64 |
+
"dataType" : "Float16",
|
65 |
+
"formattedType" : "MultiArray (Float16 1 × 640)",
|
66 |
+
"shortDescription" : "",
|
67 |
+
"shape" : "[1, 640]",
|
68 |
+
"name" : "decoder_output_projected",
|
69 |
+
"type" : "MultiArray"
|
70 |
+
}
|
71 |
+
],
|
72 |
+
"generatedClassName" : "MultimodalLogits",
|
73 |
+
"method" : "predict"
|
74 |
+
}
|
75 |
+
]
|
nvidia_parakeet-v3/MultimodalLogits.mlmodelc/model.mil
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
program(1.0)
|
2 |
+
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3401.3.1"}, {"coremlc-version", "3401.4.1"}, {"coremltools-component-torch", "2.5.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "9.0b1"}})]
|
3 |
+
{
|
4 |
+
func main<ios17>(tensor<fp16, [1, 640]> decoder_output_projected, tensor<fp16, [1, 640]> encoder_output_projected) {
|
5 |
+
tensor<fp16, [1, 640]> input_1_cast_fp16 = add(x = decoder_output_projected, y = encoder_output_projected)[name = tensor<string, []>("input_1_cast_fp16")];
|
6 |
+
tensor<fp16, [1, 640]> input_3_cast_fp16 = relu(x = input_1_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
|
7 |
+
tensor<fp16, [8198, 640]> joint_net_1_weight_to_fp16 = const()[name = tensor<string, []>("joint_net_1_weight_to_fp16"), val = tensor<fp16, [8198, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
|
8 |
+
tensor<fp16, [8198]> joint_net_1_bias_to_fp16 = const()[name = tensor<string, []>("joint_net_1_bias_to_fp16"), val = tensor<fp16, [8198]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10493568)))];
|
9 |
+
tensor<fp16, [1, 8198]> linear_0_cast_fp16 = linear(bias = joint_net_1_bias_to_fp16, weight = joint_net_1_weight_to_fp16, x = input_3_cast_fp16)[name = tensor<string, []>("linear_0_cast_fp16")];
|
10 |
+
tensor<int32, []> var_11 = const()[name = tensor<string, []>("op_11"), val = tensor<int32, []>(-1)];
|
11 |
+
tensor<fp16, [1, 8198]> var_13_softmax_cast_fp16 = softmax(axis = var_11, x = linear_0_cast_fp16)[name = tensor<string, []>("op_13_softmax_cast_fp16")];
|
12 |
+
tensor<fp32, []> var_13_epsilon_0 = const()[name = tensor<string, []>("op_13_epsilon_0"), val = tensor<fp32, []>(0x1p-149)];
|
13 |
+
tensor<fp16, [1, 8198]> logits = log(epsilon = var_13_epsilon_0, x = var_13_softmax_cast_fp16)[name = tensor<string, []>("op_13_cast_fp16")];
|
14 |
+
} -> (logits);
|
15 |
+
}
|
nvidia_parakeet-v3/MultimodalLogits.mlmodelc/weights/weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d83381f8a19ac296033554a7cfec355063b8f3225129cb8bed013c92f6ab141f
|
3 |
+
size 10510028
|
nvidia_parakeet-v3/TextDecoder.mlmodelc/LICENSE_NOTICE.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Argmax proprietary and confidential. Under NDA.
|
2 |
+
|
3 |
+
Copyright 2024 Argmax, Inc. All rights reserved.
|
4 |
+
|
5 |
+
Unauthorized access, copying, use, distribution, and or commercialization of this file, via any medium or means is strictly prohibited.
|
6 |
+
|
7 |
+
Please contact Argmax for licensing information at [email protected].
|
nvidia_parakeet-v3/TextDecoder.mlmodelc/analytics/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91faa7cfe003e448303bbbec3fe4ae0cf18a80ec8d903f760867e905b09cc125
|
3 |
+
size 243
|
nvidia_parakeet-v3/TextDecoder.mlmodelc/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d337a032cea76091dc96a57d0c7a904c95190e54442a2fe336057ca0714378ce
|
3 |
+
size 504
|
nvidia_parakeet-v3/TextDecoder.mlmodelc/metadata.json
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"metadataOutputVersion" : "3.0",
|
4 |
+
"storagePrecision" : "Float16",
|
5 |
+
"outputSchema" : [
|
6 |
+
{
|
7 |
+
"hasShapeFlexibility" : "0",
|
8 |
+
"isOptional" : "0",
|
9 |
+
"dataType" : "Float16",
|
10 |
+
"formattedType" : "MultiArray (Float16 1 × 640)",
|
11 |
+
"shortDescription" : "",
|
12 |
+
"shape" : "[1, 640]",
|
13 |
+
"name" : "decoder_output_projected",
|
14 |
+
"type" : "MultiArray"
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"hasShapeFlexibility" : "0",
|
18 |
+
"isOptional" : "0",
|
19 |
+
"dataType" : "Float16",
|
20 |
+
"formattedType" : "MultiArray (Float16 2 × 640)",
|
21 |
+
"shortDescription" : "",
|
22 |
+
"shape" : "[2, 640]",
|
23 |
+
"name" : "new_state_1",
|
24 |
+
"type" : "MultiArray"
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"hasShapeFlexibility" : "0",
|
28 |
+
"isOptional" : "0",
|
29 |
+
"dataType" : "Float16",
|
30 |
+
"formattedType" : "MultiArray (Float16 2 × 640)",
|
31 |
+
"shortDescription" : "",
|
32 |
+
"shape" : "[2, 640]",
|
33 |
+
"name" : "new_state_2",
|
34 |
+
"type" : "MultiArray"
|
35 |
+
}
|
36 |
+
],
|
37 |
+
"modelParameters" : [
|
38 |
+
|
39 |
+
],
|
40 |
+
"specificationVersion" : 8,
|
41 |
+
"mlProgramOperationTypeHistogram" : {
|
42 |
+
"Select" : 1,
|
43 |
+
"Ios17.squeeze" : 7,
|
44 |
+
"Ios17.gather" : 1,
|
45 |
+
"Ios17.cast" : 3,
|
46 |
+
"Ios17.lstm" : 2,
|
47 |
+
"Split" : 2,
|
48 |
+
"Ios17.add" : 1,
|
49 |
+
"Ios17.linear" : 1,
|
50 |
+
"Ios17.greaterEqual" : 1,
|
51 |
+
"Stack" : 2,
|
52 |
+
"Ios17.expandDims" : 3
|
53 |
+
},
|
54 |
+
"computePrecision" : "Mixed (Float16, Int16, Int32)",
|
55 |
+
"isUpdatable" : "0",
|
56 |
+
"stateSchema" : [
|
57 |
+
|
58 |
+
],
|
59 |
+
"availability" : {
|
60 |
+
"macOS" : "14.0",
|
61 |
+
"tvOS" : "17.0",
|
62 |
+
"visionOS" : "1.0",
|
63 |
+
"watchOS" : "10.0",
|
64 |
+
"iOS" : "17.0",
|
65 |
+
"macCatalyst" : "17.0"
|
66 |
+
},
|
67 |
+
"modelType" : {
|
68 |
+
"name" : "MLModelType_mlProgram"
|
69 |
+
},
|
70 |
+
"userDefinedMetadata" : {
|
71 |
+
"com.github.apple.coremltools.conversion_date" : "2025-08-14",
|
72 |
+
"com.github.apple.coremltools.source" : "torch==2.5.0",
|
73 |
+
"com.github.apple.coremltools.version" : "9.0b1",
|
74 |
+
"com.github.apple.coremltools.source_dialect" : "TorchScript"
|
75 |
+
},
|
76 |
+
"inputSchema" : [
|
77 |
+
{
|
78 |
+
"hasShapeFlexibility" : "0",
|
79 |
+
"isOptional" : "0",
|
80 |
+
"dataType" : "Int32",
|
81 |
+
"formattedType" : "MultiArray (Int32 1)",
|
82 |
+
"shortDescription" : "",
|
83 |
+
"shape" : "[1]",
|
84 |
+
"name" : "decoder_input_ids",
|
85 |
+
"type" : "MultiArray"
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"hasShapeFlexibility" : "0",
|
89 |
+
"isOptional" : "0",
|
90 |
+
"dataType" : "Float16",
|
91 |
+
"formattedType" : "MultiArray (Float16 2 × 640)",
|
92 |
+
"shortDescription" : "",
|
93 |
+
"shape" : "[2, 640]",
|
94 |
+
"name" : "state_1",
|
95 |
+
"type" : "MultiArray"
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"hasShapeFlexibility" : "0",
|
99 |
+
"isOptional" : "0",
|
100 |
+
"dataType" : "Float16",
|
101 |
+
"formattedType" : "MultiArray (Float16 2 × 640)",
|
102 |
+
"shortDescription" : "",
|
103 |
+
"shape" : "[2, 640]",
|
104 |
+
"name" : "state_2",
|
105 |
+
"type" : "MultiArray"
|
106 |
+
}
|
107 |
+
],
|
108 |
+
"generatedClassName" : "TextDecoder",
|
109 |
+
"method" : "predict"
|
110 |
+
}
|
111 |
+
]
|
nvidia_parakeet-v3/TextDecoder.mlmodelc/model.mil
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
program(1.0)
|
2 |
+
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3401.3.1"}, {"coremlc-version", "3401.4.1"}, {"coremltools-component-torch", "2.5.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "9.0b1"}})]
|
3 |
+
{
|
4 |
+
func main<ios17>(tensor<int32, [1]> decoder_input_ids, tensor<fp16, [2, 640]> state_1, tensor<fp16, [2, 640]> state_2) {
|
5 |
+
tensor<int32, []> input_1_batch_dims_0 = const()[name = tensor<string, []>("input_1_batch_dims_0"), val = tensor<int32, []>(0)];
|
6 |
+
tensor<bool, []> input_1_validate_indices_0 = const()[name = tensor<string, []>("input_1_validate_indices_0"), val = tensor<bool, []>(false)];
|
7 |
+
tensor<fp16, [8193, 640]> prediction_embed_weight_to_fp16 = const()[name = tensor<string, []>("prediction_embed_weight_to_fp16"), val = tensor<fp16, [8193, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
|
8 |
+
tensor<string, []> decoder_input_ids_to_int16_dtype_0 = const()[name = tensor<string, []>("decoder_input_ids_to_int16_dtype_0"), val = tensor<string, []>("int16")];
|
9 |
+
tensor<string, []> cast_6_dtype_0 = const()[name = tensor<string, []>("cast_6_dtype_0"), val = tensor<string, []>("int32")];
|
10 |
+
tensor<int32, []> greater_equal_0_y_0 = const()[name = tensor<string, []>("greater_equal_0_y_0"), val = tensor<int32, []>(0)];
|
11 |
+
tensor<int16, [1]> decoder_input_ids_to_int16 = cast(dtype = decoder_input_ids_to_int16_dtype_0, x = decoder_input_ids)[name = tensor<string, []>("cast_9")];
|
12 |
+
tensor<int32, [1]> cast_6 = cast(dtype = cast_6_dtype_0, x = decoder_input_ids_to_int16)[name = tensor<string, []>("cast_8")];
|
13 |
+
tensor<bool, [1]> greater_equal_0 = greater_equal(x = cast_6, y = greater_equal_0_y_0)[name = tensor<string, []>("greater_equal_0")];
|
14 |
+
tensor<int32, []> slice_by_index_0 = const()[name = tensor<string, []>("slice_by_index_0"), val = tensor<int32, []>(8193)];
|
15 |
+
tensor<int32, [1]> add_2 = add(x = cast_6, y = slice_by_index_0)[name = tensor<string, []>("add_2")];
|
16 |
+
tensor<int32, [1]> select_0 = select(a = cast_6, b = add_2, cond = greater_equal_0)[name = tensor<string, []>("select_0")];
|
17 |
+
tensor<int32, []> input_1_cast_fp16_cast_uint16_axis_0 = const()[name = tensor<string, []>("input_1_cast_fp16_cast_uint16_axis_0"), val = tensor<int32, []>(0)];
|
18 |
+
tensor<string, []> select_0_to_int16_dtype_0 = const()[name = tensor<string, []>("select_0_to_int16_dtype_0"), val = tensor<string, []>("int16")];
|
19 |
+
tensor<int16, [1]> select_0_to_int16 = cast(dtype = select_0_to_int16_dtype_0, x = select_0)[name = tensor<string, []>("cast_7")];
|
20 |
+
tensor<fp16, [1, 640]> input_1_cast_fp16_cast_uint16_cast_uint16 = gather(axis = input_1_cast_fp16_cast_uint16_axis_0, batch_dims = input_1_batch_dims_0, indices = select_0_to_int16, validate_indices = input_1_validate_indices_0, x = prediction_embed_weight_to_fp16)[name = tensor<string, []>("input_1_cast_fp16_cast_uint16_cast_uint16")];
|
21 |
+
tensor<int32, [1]> input_3_axes_0 = const()[name = tensor<string, []>("input_3_axes_0"), val = tensor<int32, [1]>([1])];
|
22 |
+
tensor<fp16, [1, 1, 640]> input_3_cast_fp16 = expand_dims(axes = input_3_axes_0, x = input_1_cast_fp16_cast_uint16_cast_uint16)[name = tensor<string, []>("input_3_cast_fp16")];
|
23 |
+
tensor<int32, [1]> hx_1_axes_0 = const()[name = tensor<string, []>("hx_1_axes_0"), val = tensor<int32, [1]>([1])];
|
24 |
+
tensor<fp16, [2, 1, 640]> hx_1_cast_fp16 = expand_dims(axes = hx_1_axes_0, x = state_1)[name = tensor<string, []>("hx_1_cast_fp16")];
|
25 |
+
tensor<int32, [1]> hx_axes_0 = const()[name = tensor<string, []>("hx_axes_0"), val = tensor<int32, [1]>([1])];
|
26 |
+
tensor<fp16, [2, 1, 640]> hx_cast_fp16 = expand_dims(axes = hx_axes_0, x = state_2)[name = tensor<string, []>("hx_cast_fp16")];
|
27 |
+
tensor<int32, []> split_0_num_splits_0 = const()[name = tensor<string, []>("split_0_num_splits_0"), val = tensor<int32, []>(2)];
|
28 |
+
tensor<int32, []> split_0_axis_0 = const()[name = tensor<string, []>("split_0_axis_0"), val = tensor<int32, []>(0)];
|
29 |
+
tensor<fp16, [1, 1, 640]> split_0_cast_fp16_0, tensor<fp16, [1, 1, 640]> split_0_cast_fp16_1 = split(axis = split_0_axis_0, num_splits = split_0_num_splits_0, x = hx_1_cast_fp16)[name = tensor<string, []>("split_0_cast_fp16")];
|
30 |
+
tensor<int32, []> split_1_num_splits_0 = const()[name = tensor<string, []>("split_1_num_splits_0"), val = tensor<int32, []>(2)];
|
31 |
+
tensor<int32, []> split_1_axis_0 = const()[name = tensor<string, []>("split_1_axis_0"), val = tensor<int32, []>(0)];
|
32 |
+
tensor<fp16, [1, 1, 640]> split_1_cast_fp16_0, tensor<fp16, [1, 1, 640]> split_1_cast_fp16_1 = split(axis = split_1_axis_0, num_splits = split_1_num_splits_0, x = hx_cast_fp16)[name = tensor<string, []>("split_1_cast_fp16")];
|
33 |
+
tensor<int32, [1]> output_lstm_layer_0_lstm_h0_squeeze_axes_0 = const()[name = tensor<string, []>("output_lstm_layer_0_lstm_h0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
|
34 |
+
tensor<fp16, [1, 640]> output_lstm_layer_0_lstm_h0_squeeze_cast_fp16 = squeeze(axes = output_lstm_layer_0_lstm_h0_squeeze_axes_0, x = split_0_cast_fp16_0)[name = tensor<string, []>("output_lstm_layer_0_lstm_h0_squeeze_cast_fp16")];
|
35 |
+
tensor<int32, [1]> output_lstm_layer_0_lstm_c0_squeeze_axes_0 = const()[name = tensor<string, []>("output_lstm_layer_0_lstm_c0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
|
36 |
+
tensor<fp16, [1, 640]> output_lstm_layer_0_lstm_c0_squeeze_cast_fp16 = squeeze(axes = output_lstm_layer_0_lstm_c0_squeeze_axes_0, x = split_1_cast_fp16_0)[name = tensor<string, []>("output_lstm_layer_0_lstm_c0_squeeze_cast_fp16")];
|
37 |
+
tensor<string, []> output_lstm_layer_0_direction_0 = const()[name = tensor<string, []>("output_lstm_layer_0_direction_0"), val = tensor<string, []>("forward")];
|
38 |
+
tensor<bool, []> output_lstm_layer_0_output_sequence_0 = const()[name = tensor<string, []>("output_lstm_layer_0_output_sequence_0"), val = tensor<bool, []>(true)];
|
39 |
+
tensor<string, []> output_lstm_layer_0_recurrent_activation_0 = const()[name = tensor<string, []>("output_lstm_layer_0_recurrent_activation_0"), val = tensor<string, []>("sigmoid")];
|
40 |
+
tensor<string, []> output_lstm_layer_0_cell_activation_0 = const()[name = tensor<string, []>("output_lstm_layer_0_cell_activation_0"), val = tensor<string, []>("tanh")];
|
41 |
+
tensor<string, []> output_lstm_layer_0_activation_0 = const()[name = tensor<string, []>("output_lstm_layer_0_activation_0"), val = tensor<string, []>("tanh")];
|
42 |
+
tensor<fp16, [2560, 640]> concat_1_to_fp16 = const()[name = tensor<string, []>("concat_1_to_fp16"), val = tensor<fp16, [2560, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10487168)))];
|
43 |
+
tensor<fp16, [2560, 640]> concat_2_to_fp16 = const()[name = tensor<string, []>("concat_2_to_fp16"), val = tensor<fp16, [2560, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13764032)))];
|
44 |
+
tensor<fp16, [2560]> concat_0_to_fp16 = const()[name = tensor<string, []>("concat_0_to_fp16"), val = tensor<fp16, [2560]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(17040896)))];
|
45 |
+
tensor<fp16, [1, 1, 640]> output_lstm_layer_0_cast_fp16_0, tensor<fp16, [1, 640]> output_lstm_layer_0_cast_fp16_1, tensor<fp16, [1, 640]> output_lstm_layer_0_cast_fp16_2 = lstm(activation = output_lstm_layer_0_activation_0, bias = concat_0_to_fp16, cell_activation = output_lstm_layer_0_cell_activation_0, direction = output_lstm_layer_0_direction_0, initial_c = output_lstm_layer_0_lstm_c0_squeeze_cast_fp16, initial_h = output_lstm_layer_0_lstm_h0_squeeze_cast_fp16, output_sequence = output_lstm_layer_0_output_sequence_0, recurrent_activation = output_lstm_layer_0_recurrent_activation_0, weight_hh = concat_2_to_fp16, weight_ih = concat_1_to_fp16, x = input_3_cast_fp16)[name = tensor<string, []>("output_lstm_layer_0_cast_fp16")];
|
46 |
+
tensor<int32, [1]> output_lstm_h0_squeeze_axes_0 = const()[name = tensor<string, []>("output_lstm_h0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
|
47 |
+
tensor<fp16, [1, 640]> output_lstm_h0_squeeze_cast_fp16 = squeeze(axes = output_lstm_h0_squeeze_axes_0, x = split_0_cast_fp16_1)[name = tensor<string, []>("output_lstm_h0_squeeze_cast_fp16")];
|
48 |
+
tensor<int32, [1]> output_lstm_c0_squeeze_axes_0 = const()[name = tensor<string, []>("output_lstm_c0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
|
49 |
+
tensor<fp16, [1, 640]> output_lstm_c0_squeeze_cast_fp16 = squeeze(axes = output_lstm_c0_squeeze_axes_0, x = split_1_cast_fp16_1)[name = tensor<string, []>("output_lstm_c0_squeeze_cast_fp16")];
|
50 |
+
tensor<string, []> output_direction_0 = const()[name = tensor<string, []>("output_direction_0"), val = tensor<string, []>("forward")];
|
51 |
+
tensor<bool, []> output_output_sequence_0 = const()[name = tensor<string, []>("output_output_sequence_0"), val = tensor<bool, []>(true)];
|
52 |
+
tensor<string, []> output_recurrent_activation_0 = const()[name = tensor<string, []>("output_recurrent_activation_0"), val = tensor<string, []>("sigmoid")];
|
53 |
+
tensor<string, []> output_cell_activation_0 = const()[name = tensor<string, []>("output_cell_activation_0"), val = tensor<string, []>("tanh")];
|
54 |
+
tensor<string, []> output_activation_0 = const()[name = tensor<string, []>("output_activation_0"), val = tensor<string, []>("tanh")];
|
55 |
+
tensor<fp16, [2560, 640]> concat_4_to_fp16 = const()[name = tensor<string, []>("concat_4_to_fp16"), val = tensor<fp16, [2560, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(17046080)))];
|
56 |
+
tensor<fp16, [2560, 640]> concat_5_to_fp16 = const()[name = tensor<string, []>("concat_5_to_fp16"), val = tensor<fp16, [2560, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(20322944)))];
|
57 |
+
tensor<fp16, [2560]> concat_3_to_fp16 = const()[name = tensor<string, []>("concat_3_to_fp16"), val = tensor<fp16, [2560]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(23599808)))];
|
58 |
+
tensor<fp16, [1, 1, 640]> output_cast_fp16_0, tensor<fp16, [1, 640]> output_cast_fp16_1, tensor<fp16, [1, 640]> output_cast_fp16_2 = lstm(activation = output_activation_0, bias = concat_3_to_fp16, cell_activation = output_cell_activation_0, direction = output_direction_0, initial_c = output_lstm_c0_squeeze_cast_fp16, initial_h = output_lstm_h0_squeeze_cast_fp16, output_sequence = output_output_sequence_0, recurrent_activation = output_recurrent_activation_0, weight_hh = concat_5_to_fp16, weight_ih = concat_4_to_fp16, x = output_lstm_layer_0_cast_fp16_0)[name = tensor<string, []>("output_cast_fp16")];
|
59 |
+
tensor<int32, []> var_32_axis_0 = const()[name = tensor<string, []>("op_32_axis_0"), val = tensor<int32, []>(0)];
|
60 |
+
tensor<fp16, [2, 1, 640]> var_32_cast_fp16 = stack(axis = var_32_axis_0, values = (output_lstm_layer_0_cast_fp16_1, output_cast_fp16_1))[name = tensor<string, []>("op_32_cast_fp16")];
|
61 |
+
tensor<int32, []> var_33_axis_0 = const()[name = tensor<string, []>("op_33_axis_0"), val = tensor<int32, []>(0)];
|
62 |
+
tensor<fp16, [2, 1, 640]> var_33_cast_fp16 = stack(axis = var_33_axis_0, values = (output_lstm_layer_0_cast_fp16_2, output_cast_fp16_2))[name = tensor<string, []>("op_33_cast_fp16")];
|
63 |
+
tensor<int32, [1]> input_axes_0 = const()[name = tensor<string, []>("input_axes_0"), val = tensor<int32, [1]>([1])];
|
64 |
+
tensor<fp16, [1, 640]> input_cast_fp16 = squeeze(axes = input_axes_0, x = output_cast_fp16_0)[name = tensor<string, []>("input_cast_fp16")];
|
65 |
+
tensor<int32, [1]> var_35_axes_0 = const()[name = tensor<string, []>("op_35_axes_0"), val = tensor<int32, [1]>([1])];
|
66 |
+
tensor<fp16, [2, 640]> new_state_1 = squeeze(axes = var_35_axes_0, x = var_32_cast_fp16)[name = tensor<string, []>("op_35_cast_fp16")];
|
67 |
+
tensor<int32, [1]> var_36_axes_0 = const()[name = tensor<string, []>("op_36_axes_0"), val = tensor<int32, [1]>([1])];
|
68 |
+
tensor<fp16, [2, 640]> new_state_2 = squeeze(axes = var_36_axes_0, x = var_33_cast_fp16)[name = tensor<string, []>("op_36_cast_fp16")];
|
69 |
+
tensor<fp16, [640, 640]> joint_projection_weight_to_fp16 = const()[name = tensor<string, []>("joint_projection_weight_to_fp16"), val = tensor<fp16, [640, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(23604992)))];
|
70 |
+
tensor<fp16, [640]> joint_projection_bias_to_fp16 = const()[name = tensor<string, []>("joint_projection_bias_to_fp16"), val = tensor<fp16, [640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(24424256)))];
|
71 |
+
tensor<fp16, [1, 640]> decoder_output_projected = linear(bias = joint_projection_bias_to_fp16, weight = joint_projection_weight_to_fp16, x = input_cast_fp16)[name = tensor<string, []>("linear_0_cast_fp16")];
|
72 |
+
} -> (decoder_output_projected, new_state_1, new_state_2);
|
73 |
+
}
|
nvidia_parakeet-v3/TextDecoder.mlmodelc/weights/weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36cd656ebf1105ee5aa85d1e55c00f25669327aef8b39346333a19260ca78018
|
3 |
+
size 24425600
|