whisperkittools-a8c3cdeab8da5d76a7b952aa74ffebfbcd44804b generated files: openai_whisper-tiny.en
Browse files- openai_whisper-tiny.en/AudioEncoder.mlmodelc/analytics/coremldata.bin +1 -1
- openai_whisper-tiny.en/AudioEncoder.mlmodelc/coremldata.bin +1 -1
- openai_whisper-tiny.en/AudioEncoder.mlmodelc/metadata.json +7 -9
- openai_whisper-tiny.en/AudioEncoder.mlmodelc/model.mil +19 -96
- openai_whisper-tiny.en/AudioEncoder.mlmodelc/weights/weight.bin +1 -1
- openai_whisper-tiny.en/MelSpectrogram.mlmodelc/analytics/coremldata.bin +1 -1
- openai_whisper-tiny.en/MelSpectrogram.mlmodelc/coremldata.bin +1 -1
- openai_whisper-tiny.en/MelSpectrogram.mlmodelc/metadata.json +2 -2
- openai_whisper-tiny.en/MelSpectrogram.mlmodelc/model.mil +3 -3
- openai_whisper-tiny.en/MelSpectrogram.mlmodelc/weights/weight.bin +1 -1
- openai_whisper-tiny.en/TextDecoder.mlmodelc/analytics/coremldata.bin +1 -1
- openai_whisper-tiny.en/TextDecoder.mlmodelc/coremldata.bin +1 -1
- openai_whisper-tiny.en/TextDecoder.mlmodelc/metadata.json +6 -6
- openai_whisper-tiny.en/TextDecoder.mlmodelc/model.mil +27 -136
- openai_whisper-tiny.en/TextDecoder.mlmodelc/weights/weight.bin +1 -1
openai_whisper-tiny.en/AudioEncoder.mlmodelc/analytics/coremldata.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 243
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:be62662cccc25b6eca93e6f407e024f90f72cde23a1cda8b0ca753f084274a6e
|
| 3 |
size 243
|
openai_whisper-tiny.en/AudioEncoder.mlmodelc/coremldata.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 347
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:892364c46ef43333af61711e2ef67e32cc6e7040d35263b805cb5795c8d69233
|
| 3 |
size 347
|
openai_whisper-tiny.en/AudioEncoder.mlmodelc/metadata.json
CHANGED
|
@@ -20,18 +20,16 @@
|
|
| 20 |
"specificationVersion" : 7,
|
| 21 |
"mlProgramOperationTypeHistogram" : {
|
| 22 |
"Concat" : 28,
|
| 23 |
-
"Ios16.
|
| 24 |
-
"Ios16.mul" :
|
| 25 |
"SliceByIndex" : 168,
|
| 26 |
-
"Ios16.sub" : 9,
|
| 27 |
"Transpose" : 4,
|
|
|
|
| 28 |
"Ios16.einsum" : 192,
|
| 29 |
-
"Ios16.conv" : 26,
|
| 30 |
-
"Ios16.add" : 18,
|
| 31 |
-
"Ios16.reduceMean" : 18,
|
| 32 |
-
"Ios16.softmax" : 96,
|
| 33 |
"Ios16.gelu" : 6,
|
| 34 |
-
"Ios16.
|
|
|
|
|
|
|
| 35 |
},
|
| 36 |
"computePrecision" : "Mixed (Float16, Int32)",
|
| 37 |
"isUpdatable" : "0",
|
|
@@ -49,7 +47,7 @@
|
|
| 49 |
"userDefinedMetadata" : {
|
| 50 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
| 51 |
"com.github.apple.coremltools.source" : "torch==2.2.2",
|
| 52 |
-
"com.github.apple.coremltools.version" : "7.
|
| 53 |
},
|
| 54 |
"inputSchema" : [
|
| 55 |
{
|
|
|
|
| 20 |
"specificationVersion" : 7,
|
| 21 |
"mlProgramOperationTypeHistogram" : {
|
| 22 |
"Concat" : 28,
|
| 23 |
+
"Ios16.add" : 9,
|
| 24 |
+
"Ios16.mul" : 96,
|
| 25 |
"SliceByIndex" : 168,
|
|
|
|
| 26 |
"Transpose" : 4,
|
| 27 |
+
"Ios16.batchNorm" : 9,
|
| 28 |
"Ios16.einsum" : 192,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
"Ios16.gelu" : 6,
|
| 30 |
+
"Ios16.softmax" : 96,
|
| 31 |
+
"Ios16.layerNorm" : 9,
|
| 32 |
+
"Ios16.conv" : 26
|
| 33 |
},
|
| 34 |
"computePrecision" : "Mixed (Float16, Int32)",
|
| 35 |
"isUpdatable" : "0",
|
|
|
|
| 47 |
"userDefinedMetadata" : {
|
| 48 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
| 49 |
"com.github.apple.coremltools.source" : "torch==2.2.2",
|
| 50 |
+
"com.github.apple.coremltools.version" : "7.2"
|
| 51 |
},
|
| 52 |
"inputSchema" : [
|
| 53 |
{
|
openai_whisper-tiny.en/AudioEncoder.mlmodelc/model.mil
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
program(1.0)
|
| 2 |
-
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "5.
|
| 3 |
{
|
| 4 |
func main<ios16>(tensor<fp16, [1, 80, 1, 3000]> melspectrogram_features) {
|
| 5 |
tensor<int32, [2]> var_34 = const()[name = tensor<string, []>("op_34"), val = tensor<int32, [2]>([1, 1])];
|
|
@@ -26,18 +26,9 @@ program(1.0)
|
|
| 26 |
tensor<fp16, [1, 384, 1, 1500]> inputs_1_cast_fp16 = add(x = hidden_states_3_cast_fp16, y = var_108_to_fp16)[name = tensor<string, []>("inputs_1_cast_fp16")];
|
| 27 |
tensor<int32, []> var_118 = const()[name = tensor<string, []>("op_118"), val = tensor<int32, []>(3)];
|
| 28 |
tensor<int32, []> var_129 = const()[name = tensor<string, []>("op_129"), val = tensor<int32, []>(1)];
|
| 29 |
-
tensor<
|
| 30 |
-
tensor<int32, [1]> var_140 = const()[name = tensor<string, []>("op_140"), val = tensor<int32, [1]>([1])];
|
| 31 |
-
tensor<fp16, [1, 1, 1, 1500]> channels_mean_1_cast_fp16 = reduce_mean(axes = var_140, keep_dims = var_130, x = inputs_1_cast_fp16)[name = tensor<string, []>("channels_mean_1_cast_fp16")];
|
| 32 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_1_cast_fp16 = sub(x = inputs_1_cast_fp16, y = channels_mean_1_cast_fp16)[name = tensor<string, []>("zero_mean_1_cast_fp16")];
|
| 33 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_sq_1_cast_fp16 = mul(x = zero_mean_1_cast_fp16, y = zero_mean_1_cast_fp16)[name = tensor<string, []>("zero_mean_sq_1_cast_fp16")];
|
| 34 |
-
tensor<int32, [1]> var_144 = const()[name = tensor<string, []>("op_144"), val = tensor<int32, [1]>([1])];
|
| 35 |
-
tensor<fp16, [1, 1, 1, 1500]> var_145_cast_fp16 = reduce_mean(axes = var_144, keep_dims = var_130, x = zero_mean_sq_1_cast_fp16)[name = tensor<string, []>("op_145_cast_fp16")];
|
| 36 |
tensor<fp16, []> var_146_to_fp16 = const()[name = tensor<string, []>("op_146_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 37 |
-
tensor<fp16, [1,
|
| 38 |
-
tensor<fp16, []> denom_1_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_1_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
| 39 |
-
tensor<fp16, [1, 1, 1, 1500]> denom_1_cast_fp16 = rsqrt(epsilon = denom_1_epsilon_0_to_fp16, x = var_147_cast_fp16)[name = tensor<string, []>("denom_1_cast_fp16")];
|
| 40 |
-
tensor<fp16, [1, 384, 1, 1500]> out_1_cast_fp16 = mul(x = zero_mean_1_cast_fp16, y = denom_1_cast_fp16)[name = tensor<string, []>("out_1_cast_fp16")];
|
| 41 |
tensor<fp16, [384]> obj_1_mean_0_to_fp16 = const()[name = tensor<string, []>("obj_1_mean_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2222976)))];
|
| 42 |
tensor<fp16, [384]> obj_1_variance_0_to_fp16 = const()[name = tensor<string, []>("obj_1_variance_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2223808)))];
|
| 43 |
tensor<fp16, [384]> obj_1_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_1_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2224640)))];
|
|
@@ -424,17 +415,9 @@ program(1.0)
|
|
| 424 |
tensor<fp16, [384]> layers_0_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3407872)))];
|
| 425 |
tensor<fp16, [1, 384, 1, 1500]> obj_3_cast_fp16 = conv(bias = layers_0_self_attn_o_proj_bias_to_fp16, dilations = var_610, groups = var_129, pad = obj_3_pad_0, pad_type = obj_3_pad_type_0, strides = var_608, weight = layers_0_self_attn_o_proj_weight_to_fp16, x = input_1_cast_fp16)[name = tensor<string, []>("obj_3_cast_fp16")];
|
| 426 |
tensor<fp16, [1, 384, 1, 1500]> inputs_3_cast_fp16 = add(x = inputs_1_cast_fp16, y = obj_3_cast_fp16)[name = tensor<string, []>("inputs_3_cast_fp16")];
|
| 427 |
-
tensor<int32, [1]>
|
| 428 |
-
tensor<fp16, [1, 1, 1, 1500]> channels_mean_3_cast_fp16 = reduce_mean(axes = var_616, keep_dims = var_130, x = inputs_3_cast_fp16)[name = tensor<string, []>("channels_mean_3_cast_fp16")];
|
| 429 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_3_cast_fp16 = sub(x = inputs_3_cast_fp16, y = channels_mean_3_cast_fp16)[name = tensor<string, []>("zero_mean_3_cast_fp16")];
|
| 430 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_sq_3_cast_fp16 = mul(x = zero_mean_3_cast_fp16, y = zero_mean_3_cast_fp16)[name = tensor<string, []>("zero_mean_sq_3_cast_fp16")];
|
| 431 |
-
tensor<int32, [1]> var_620 = const()[name = tensor<string, []>("op_620"), val = tensor<int32, [1]>([1])];
|
| 432 |
-
tensor<fp16, [1, 1, 1, 1500]> var_621_cast_fp16 = reduce_mean(axes = var_620, keep_dims = var_130, x = zero_mean_sq_3_cast_fp16)[name = tensor<string, []>("op_621_cast_fp16")];
|
| 433 |
tensor<fp16, []> var_622_to_fp16 = const()[name = tensor<string, []>("op_622_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 434 |
-
tensor<fp16, [1,
|
| 435 |
-
tensor<fp16, []> denom_3_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_3_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
| 436 |
-
tensor<fp16, [1, 1, 1, 1500]> denom_3_cast_fp16 = rsqrt(epsilon = denom_3_epsilon_0_to_fp16, x = var_623_cast_fp16)[name = tensor<string, []>("denom_3_cast_fp16")];
|
| 437 |
-
tensor<fp16, [1, 384, 1, 1500]> out_3_cast_fp16 = mul(x = zero_mean_3_cast_fp16, y = denom_3_cast_fp16)[name = tensor<string, []>("out_3_cast_fp16")];
|
| 438 |
tensor<fp16, [384]> input_3_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_3_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3408704)))];
|
| 439 |
tensor<fp16, [384]> input_3_beta_0_to_fp16 = const()[name = tensor<string, []>("input_3_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3409536)))];
|
| 440 |
tensor<fp16, []> input_3_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_3_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
@@ -458,18 +441,9 @@ program(1.0)
|
|
| 458 |
tensor<fp16, [1, 384, 1, 1500]> inputs_5_cast_fp16 = add(x = inputs_3_cast_fp16, y = hidden_states_5_cast_fp16)[name = tensor<string, []>("inputs_5_cast_fp16")];
|
| 459 |
tensor<int32, []> var_651 = const()[name = tensor<string, []>("op_651"), val = tensor<int32, []>(3)];
|
| 460 |
tensor<int32, []> var_662 = const()[name = tensor<string, []>("op_662"), val = tensor<int32, []>(1)];
|
| 461 |
-
tensor<
|
| 462 |
-
tensor<int32, [1]> var_673 = const()[name = tensor<string, []>("op_673"), val = tensor<int32, [1]>([1])];
|
| 463 |
-
tensor<fp16, [1, 1, 1, 1500]> channels_mean_5_cast_fp16 = reduce_mean(axes = var_673, keep_dims = var_663, x = inputs_5_cast_fp16)[name = tensor<string, []>("channels_mean_5_cast_fp16")];
|
| 464 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_5_cast_fp16 = sub(x = inputs_5_cast_fp16, y = channels_mean_5_cast_fp16)[name = tensor<string, []>("zero_mean_5_cast_fp16")];
|
| 465 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_sq_5_cast_fp16 = mul(x = zero_mean_5_cast_fp16, y = zero_mean_5_cast_fp16)[name = tensor<string, []>("zero_mean_sq_5_cast_fp16")];
|
| 466 |
-
tensor<int32, [1]> var_677 = const()[name = tensor<string, []>("op_677"), val = tensor<int32, [1]>([1])];
|
| 467 |
-
tensor<fp16, [1, 1, 1, 1500]> var_678_cast_fp16 = reduce_mean(axes = var_677, keep_dims = var_663, x = zero_mean_sq_5_cast_fp16)[name = tensor<string, []>("op_678_cast_fp16")];
|
| 468 |
tensor<fp16, []> var_679_to_fp16 = const()[name = tensor<string, []>("op_679_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 469 |
-
tensor<fp16, [1,
|
| 470 |
-
tensor<fp16, []> denom_5_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_5_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
| 471 |
-
tensor<fp16, [1, 1, 1, 1500]> denom_5_cast_fp16 = rsqrt(epsilon = denom_5_epsilon_0_to_fp16, x = var_680_cast_fp16)[name = tensor<string, []>("denom_5_cast_fp16")];
|
| 472 |
-
tensor<fp16, [1, 384, 1, 1500]> out_5_cast_fp16 = mul(x = zero_mean_5_cast_fp16, y = denom_5_cast_fp16)[name = tensor<string, []>("out_5_cast_fp16")];
|
| 473 |
tensor<fp16, [384]> obj_5_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_5_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5773760)))];
|
| 474 |
tensor<fp16, [384]> obj_5_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_5_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5774592)))];
|
| 475 |
tensor<fp16, []> obj_5_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_5_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
@@ -854,17 +828,9 @@ program(1.0)
|
|
| 854 |
tensor<fp16, [384]> layers_1_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6956992)))];
|
| 855 |
tensor<fp16, [1, 384, 1, 1500]> obj_7_cast_fp16 = conv(bias = layers_1_self_attn_o_proj_bias_to_fp16, dilations = var_1143, groups = var_662, pad = obj_7_pad_0, pad_type = obj_7_pad_type_0, strides = var_1141, weight = layers_1_self_attn_o_proj_weight_to_fp16, x = input_9_cast_fp16)[name = tensor<string, []>("obj_7_cast_fp16")];
|
| 856 |
tensor<fp16, [1, 384, 1, 1500]> inputs_7_cast_fp16 = add(x = inputs_5_cast_fp16, y = obj_7_cast_fp16)[name = tensor<string, []>("inputs_7_cast_fp16")];
|
| 857 |
-
tensor<int32, [1]>
|
| 858 |
-
tensor<fp16, [1, 1, 1, 1500]> channels_mean_7_cast_fp16 = reduce_mean(axes = var_1149, keep_dims = var_663, x = inputs_7_cast_fp16)[name = tensor<string, []>("channels_mean_7_cast_fp16")];
|
| 859 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_7_cast_fp16 = sub(x = inputs_7_cast_fp16, y = channels_mean_7_cast_fp16)[name = tensor<string, []>("zero_mean_7_cast_fp16")];
|
| 860 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_sq_7_cast_fp16 = mul(x = zero_mean_7_cast_fp16, y = zero_mean_7_cast_fp16)[name = tensor<string, []>("zero_mean_sq_7_cast_fp16")];
|
| 861 |
-
tensor<int32, [1]> var_1153 = const()[name = tensor<string, []>("op_1153"), val = tensor<int32, [1]>([1])];
|
| 862 |
-
tensor<fp16, [1, 1, 1, 1500]> var_1154_cast_fp16 = reduce_mean(axes = var_1153, keep_dims = var_663, x = zero_mean_sq_7_cast_fp16)[name = tensor<string, []>("op_1154_cast_fp16")];
|
| 863 |
tensor<fp16, []> var_1155_to_fp16 = const()[name = tensor<string, []>("op_1155_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 864 |
-
tensor<fp16, [1,
|
| 865 |
-
tensor<fp16, []> denom_7_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_7_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
| 866 |
-
tensor<fp16, [1, 1, 1, 1500]> denom_7_cast_fp16 = rsqrt(epsilon = denom_7_epsilon_0_to_fp16, x = var_1156_cast_fp16)[name = tensor<string, []>("denom_7_cast_fp16")];
|
| 867 |
-
tensor<fp16, [1, 384, 1, 1500]> out_7_cast_fp16 = mul(x = zero_mean_7_cast_fp16, y = denom_7_cast_fp16)[name = tensor<string, []>("out_7_cast_fp16")];
|
| 868 |
tensor<fp16, [384]> input_11_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_11_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6957824)))];
|
| 869 |
tensor<fp16, [384]> input_11_beta_0_to_fp16 = const()[name = tensor<string, []>("input_11_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6958656)))];
|
| 870 |
tensor<fp16, []> input_11_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_11_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
@@ -888,18 +854,9 @@ program(1.0)
|
|
| 888 |
tensor<fp16, [1, 384, 1, 1500]> inputs_9_cast_fp16 = add(x = inputs_7_cast_fp16, y = hidden_states_7_cast_fp16)[name = tensor<string, []>("inputs_9_cast_fp16")];
|
| 889 |
tensor<int32, []> var_1184 = const()[name = tensor<string, []>("op_1184"), val = tensor<int32, []>(3)];
|
| 890 |
tensor<int32, []> var_1195 = const()[name = tensor<string, []>("op_1195"), val = tensor<int32, []>(1)];
|
| 891 |
-
tensor<
|
| 892 |
-
tensor<int32, [1]> var_1206 = const()[name = tensor<string, []>("op_1206"), val = tensor<int32, [1]>([1])];
|
| 893 |
-
tensor<fp16, [1, 1, 1, 1500]> channels_mean_9_cast_fp16 = reduce_mean(axes = var_1206, keep_dims = var_1196, x = inputs_9_cast_fp16)[name = tensor<string, []>("channels_mean_9_cast_fp16")];
|
| 894 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_9_cast_fp16 = sub(x = inputs_9_cast_fp16, y = channels_mean_9_cast_fp16)[name = tensor<string, []>("zero_mean_9_cast_fp16")];
|
| 895 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_sq_9_cast_fp16 = mul(x = zero_mean_9_cast_fp16, y = zero_mean_9_cast_fp16)[name = tensor<string, []>("zero_mean_sq_9_cast_fp16")];
|
| 896 |
-
tensor<int32, [1]> var_1210 = const()[name = tensor<string, []>("op_1210"), val = tensor<int32, [1]>([1])];
|
| 897 |
-
tensor<fp16, [1, 1, 1, 1500]> var_1211_cast_fp16 = reduce_mean(axes = var_1210, keep_dims = var_1196, x = zero_mean_sq_9_cast_fp16)[name = tensor<string, []>("op_1211_cast_fp16")];
|
| 898 |
tensor<fp16, []> var_1212_to_fp16 = const()[name = tensor<string, []>("op_1212_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 899 |
-
tensor<fp16, [1,
|
| 900 |
-
tensor<fp16, []> denom_9_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_9_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
| 901 |
-
tensor<fp16, [1, 1, 1, 1500]> denom_9_cast_fp16 = rsqrt(epsilon = denom_9_epsilon_0_to_fp16, x = var_1213_cast_fp16)[name = tensor<string, []>("denom_9_cast_fp16")];
|
| 902 |
-
tensor<fp16, [1, 384, 1, 1500]> out_9_cast_fp16 = mul(x = zero_mean_9_cast_fp16, y = denom_9_cast_fp16)[name = tensor<string, []>("out_9_cast_fp16")];
|
| 903 |
tensor<fp16, [384]> obj_9_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_9_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9322880)))];
|
| 904 |
tensor<fp16, [384]> obj_9_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_9_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9323712)))];
|
| 905 |
tensor<fp16, []> obj_9_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_9_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
@@ -1284,17 +1241,9 @@ program(1.0)
|
|
| 1284 |
tensor<fp16, [384]> layers_2_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10506112)))];
|
| 1285 |
tensor<fp16, [1, 384, 1, 1500]> obj_11_cast_fp16 = conv(bias = layers_2_self_attn_o_proj_bias_to_fp16, dilations = var_1676, groups = var_1195, pad = obj_11_pad_0, pad_type = obj_11_pad_type_0, strides = var_1674, weight = layers_2_self_attn_o_proj_weight_to_fp16, x = input_17_cast_fp16)[name = tensor<string, []>("obj_11_cast_fp16")];
|
| 1286 |
tensor<fp16, [1, 384, 1, 1500]> inputs_11_cast_fp16 = add(x = inputs_9_cast_fp16, y = obj_11_cast_fp16)[name = tensor<string, []>("inputs_11_cast_fp16")];
|
| 1287 |
-
tensor<int32, [1]>
|
| 1288 |
-
tensor<fp16, [1, 1, 1, 1500]> channels_mean_11_cast_fp16 = reduce_mean(axes = var_1682, keep_dims = var_1196, x = inputs_11_cast_fp16)[name = tensor<string, []>("channels_mean_11_cast_fp16")];
|
| 1289 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_11_cast_fp16 = sub(x = inputs_11_cast_fp16, y = channels_mean_11_cast_fp16)[name = tensor<string, []>("zero_mean_11_cast_fp16")];
|
| 1290 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_sq_11_cast_fp16 = mul(x = zero_mean_11_cast_fp16, y = zero_mean_11_cast_fp16)[name = tensor<string, []>("zero_mean_sq_11_cast_fp16")];
|
| 1291 |
-
tensor<int32, [1]> var_1686 = const()[name = tensor<string, []>("op_1686"), val = tensor<int32, [1]>([1])];
|
| 1292 |
-
tensor<fp16, [1, 1, 1, 1500]> var_1687_cast_fp16 = reduce_mean(axes = var_1686, keep_dims = var_1196, x = zero_mean_sq_11_cast_fp16)[name = tensor<string, []>("op_1687_cast_fp16")];
|
| 1293 |
tensor<fp16, []> var_1688_to_fp16 = const()[name = tensor<string, []>("op_1688_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 1294 |
-
tensor<fp16, [1,
|
| 1295 |
-
tensor<fp16, []> denom_11_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_11_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
| 1296 |
-
tensor<fp16, [1, 1, 1, 1500]> denom_11_cast_fp16 = rsqrt(epsilon = denom_11_epsilon_0_to_fp16, x = var_1689_cast_fp16)[name = tensor<string, []>("denom_11_cast_fp16")];
|
| 1297 |
-
tensor<fp16, [1, 384, 1, 1500]> out_11_cast_fp16 = mul(x = zero_mean_11_cast_fp16, y = denom_11_cast_fp16)[name = tensor<string, []>("out_11_cast_fp16")];
|
| 1298 |
tensor<fp16, [384]> input_19_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_19_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10506944)))];
|
| 1299 |
tensor<fp16, [384]> input_19_beta_0_to_fp16 = const()[name = tensor<string, []>("input_19_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10507776)))];
|
| 1300 |
tensor<fp16, []> input_19_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_19_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
@@ -1318,18 +1267,9 @@ program(1.0)
|
|
| 1318 |
tensor<fp16, [1, 384, 1, 1500]> inputs_13_cast_fp16 = add(x = inputs_11_cast_fp16, y = hidden_states_9_cast_fp16)[name = tensor<string, []>("inputs_13_cast_fp16")];
|
| 1319 |
tensor<int32, []> var_1717 = const()[name = tensor<string, []>("op_1717"), val = tensor<int32, []>(3)];
|
| 1320 |
tensor<int32, []> var_1728 = const()[name = tensor<string, []>("op_1728"), val = tensor<int32, []>(1)];
|
| 1321 |
-
tensor<
|
| 1322 |
-
tensor<int32, [1]> var_1739 = const()[name = tensor<string, []>("op_1739"), val = tensor<int32, [1]>([1])];
|
| 1323 |
-
tensor<fp16, [1, 1, 1, 1500]> channels_mean_13_cast_fp16 = reduce_mean(axes = var_1739, keep_dims = var_1729, x = inputs_13_cast_fp16)[name = tensor<string, []>("channels_mean_13_cast_fp16")];
|
| 1324 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_13_cast_fp16 = sub(x = inputs_13_cast_fp16, y = channels_mean_13_cast_fp16)[name = tensor<string, []>("zero_mean_13_cast_fp16")];
|
| 1325 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_sq_13_cast_fp16 = mul(x = zero_mean_13_cast_fp16, y = zero_mean_13_cast_fp16)[name = tensor<string, []>("zero_mean_sq_13_cast_fp16")];
|
| 1326 |
-
tensor<int32, [1]> var_1743 = const()[name = tensor<string, []>("op_1743"), val = tensor<int32, [1]>([1])];
|
| 1327 |
-
tensor<fp16, [1, 1, 1, 1500]> var_1744_cast_fp16 = reduce_mean(axes = var_1743, keep_dims = var_1729, x = zero_mean_sq_13_cast_fp16)[name = tensor<string, []>("op_1744_cast_fp16")];
|
| 1328 |
tensor<fp16, []> var_1745_to_fp16 = const()[name = tensor<string, []>("op_1745_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 1329 |
-
tensor<fp16, [1,
|
| 1330 |
-
tensor<fp16, []> denom_13_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_13_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
| 1331 |
-
tensor<fp16, [1, 1, 1, 1500]> denom_13_cast_fp16 = rsqrt(epsilon = denom_13_epsilon_0_to_fp16, x = var_1746_cast_fp16)[name = tensor<string, []>("denom_13_cast_fp16")];
|
| 1332 |
-
tensor<fp16, [1, 384, 1, 1500]> out_13_cast_fp16 = mul(x = zero_mean_13_cast_fp16, y = denom_13_cast_fp16)[name = tensor<string, []>("out_13_cast_fp16")];
|
| 1333 |
tensor<fp16, [384]> obj_13_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_13_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12872000)))];
|
| 1334 |
tensor<fp16, [384]> obj_13_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_13_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12872832)))];
|
| 1335 |
tensor<fp16, []> obj_13_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_13_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
@@ -1714,17 +1654,9 @@ program(1.0)
|
|
| 1714 |
tensor<fp16, [384]> layers_3_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14055232)))];
|
| 1715 |
tensor<fp16, [1, 384, 1, 1500]> obj_cast_fp16 = conv(bias = layers_3_self_attn_o_proj_bias_to_fp16, dilations = var_2209, groups = var_1728, pad = obj_pad_0, pad_type = obj_pad_type_0, strides = var_2207, weight = layers_3_self_attn_o_proj_weight_to_fp16, x = input_25_cast_fp16)[name = tensor<string, []>("obj_cast_fp16")];
|
| 1716 |
tensor<fp16, [1, 384, 1, 1500]> inputs_15_cast_fp16 = add(x = inputs_13_cast_fp16, y = obj_cast_fp16)[name = tensor<string, []>("inputs_15_cast_fp16")];
|
| 1717 |
-
tensor<int32, [1]>
|
| 1718 |
-
tensor<fp16, [1, 1, 1, 1500]> channels_mean_15_cast_fp16 = reduce_mean(axes = var_2215, keep_dims = var_1729, x = inputs_15_cast_fp16)[name = tensor<string, []>("channels_mean_15_cast_fp16")];
|
| 1719 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_15_cast_fp16 = sub(x = inputs_15_cast_fp16, y = channels_mean_15_cast_fp16)[name = tensor<string, []>("zero_mean_15_cast_fp16")];
|
| 1720 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_sq_15_cast_fp16 = mul(x = zero_mean_15_cast_fp16, y = zero_mean_15_cast_fp16)[name = tensor<string, []>("zero_mean_sq_15_cast_fp16")];
|
| 1721 |
-
tensor<int32, [1]> var_2219 = const()[name = tensor<string, []>("op_2219"), val = tensor<int32, [1]>([1])];
|
| 1722 |
-
tensor<fp16, [1, 1, 1, 1500]> var_2220_cast_fp16 = reduce_mean(axes = var_2219, keep_dims = var_1729, x = zero_mean_sq_15_cast_fp16)[name = tensor<string, []>("op_2220_cast_fp16")];
|
| 1723 |
tensor<fp16, []> var_2221_to_fp16 = const()[name = tensor<string, []>("op_2221_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 1724 |
-
tensor<fp16, [1,
|
| 1725 |
-
tensor<fp16, []> denom_15_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_15_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
| 1726 |
-
tensor<fp16, [1, 1, 1, 1500]> denom_15_cast_fp16 = rsqrt(epsilon = denom_15_epsilon_0_to_fp16, x = var_2222_cast_fp16)[name = tensor<string, []>("denom_15_cast_fp16")];
|
| 1727 |
-
tensor<fp16, [1, 384, 1, 1500]> out_15_cast_fp16 = mul(x = zero_mean_15_cast_fp16, y = denom_15_cast_fp16)[name = tensor<string, []>("out_15_cast_fp16")];
|
| 1728 |
tensor<fp16, [384]> input_27_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_27_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14056064)))];
|
| 1729 |
tensor<fp16, [384]> input_27_beta_0_to_fp16 = const()[name = tensor<string, []>("input_27_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14056896)))];
|
| 1730 |
tensor<fp16, []> input_27_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_27_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
@@ -1746,18 +1678,9 @@ program(1.0)
|
|
| 1746 |
tensor<fp16, [384]> layers_3_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_fc2_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16420288)))];
|
| 1747 |
tensor<fp16, [1, 384, 1, 1500]> hidden_states_cast_fp16 = conv(bias = layers_3_fc2_bias_to_fp16, dilations = var_2243, groups = var_1728, pad = hidden_states_pad_0, pad_type = hidden_states_pad_type_0, strides = var_2241, weight = layers_3_fc2_weight_to_fp16, x = input_cast_fp16)[name = tensor<string, []>("hidden_states_cast_fp16")];
|
| 1748 |
tensor<fp16, [1, 384, 1, 1500]> inputs_cast_fp16 = add(x = inputs_15_cast_fp16, y = hidden_states_cast_fp16)[name = tensor<string, []>("inputs_cast_fp16")];
|
| 1749 |
-
tensor<
|
| 1750 |
-
tensor<int32, [1]> var_2253 = const()[name = tensor<string, []>("op_2253"), val = tensor<int32, [1]>([1])];
|
| 1751 |
-
tensor<fp16, [1, 1, 1, 1500]> channels_mean_cast_fp16 = reduce_mean(axes = var_2253, keep_dims = var_2249, x = inputs_cast_fp16)[name = tensor<string, []>("channels_mean_cast_fp16")];
|
| 1752 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_cast_fp16 = sub(x = inputs_cast_fp16, y = channels_mean_cast_fp16)[name = tensor<string, []>("zero_mean_cast_fp16")];
|
| 1753 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_sq_cast_fp16 = mul(x = zero_mean_cast_fp16, y = zero_mean_cast_fp16)[name = tensor<string, []>("zero_mean_sq_cast_fp16")];
|
| 1754 |
-
tensor<int32, [1]> var_2257 = const()[name = tensor<string, []>("op_2257"), val = tensor<int32, [1]>([1])];
|
| 1755 |
-
tensor<fp16, [1, 1, 1, 1500]> var_2258_cast_fp16 = reduce_mean(axes = var_2257, keep_dims = var_2249, x = zero_mean_sq_cast_fp16)[name = tensor<string, []>("op_2258_cast_fp16")];
|
| 1756 |
tensor<fp16, []> var_2259_to_fp16 = const()[name = tensor<string, []>("op_2259_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 1757 |
-
tensor<fp16, [1,
|
| 1758 |
-
tensor<fp16, []> denom_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
| 1759 |
-
tensor<fp16, [1, 1, 1, 1500]> denom_cast_fp16 = rsqrt(epsilon = denom_epsilon_0_to_fp16, x = var_2260_cast_fp16)[name = tensor<string, []>("denom_cast_fp16")];
|
| 1760 |
-
tensor<fp16, [1, 384, 1, 1500]> out_cast_fp16 = mul(x = zero_mean_cast_fp16, y = denom_cast_fp16)[name = tensor<string, []>("out_cast_fp16")];
|
| 1761 |
tensor<fp16, [384]> encoder_output_embeds_type_fp32_gamma_0_to_fp16 = const()[name = tensor<string, []>("encoder_output_embeds_type_fp32_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16421120)))];
|
| 1762 |
tensor<fp16, [384]> encoder_output_embeds_type_fp32_beta_0_to_fp16 = const()[name = tensor<string, []>("encoder_output_embeds_type_fp32_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16421952)))];
|
| 1763 |
tensor<fp16, []> encoder_output_embeds_type_fp32_epsilon_0_to_fp16 = const()[name = tensor<string, []>("encoder_output_embeds_type_fp32_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
|
| 1 |
program(1.0)
|
| 2 |
+
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.2.2"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "7.2"}})]
|
| 3 |
{
|
| 4 |
func main<ios16>(tensor<fp16, [1, 80, 1, 3000]> melspectrogram_features) {
|
| 5 |
tensor<int32, [2]> var_34 = const()[name = tensor<string, []>("op_34"), val = tensor<int32, [2]>([1, 1])];
|
|
|
|
| 26 |
tensor<fp16, [1, 384, 1, 1500]> inputs_1_cast_fp16 = add(x = hidden_states_3_cast_fp16, y = var_108_to_fp16)[name = tensor<string, []>("inputs_1_cast_fp16")];
|
| 27 |
tensor<int32, []> var_118 = const()[name = tensor<string, []>("op_118"), val = tensor<int32, []>(3)];
|
| 28 |
tensor<int32, []> var_129 = const()[name = tensor<string, []>("op_129"), val = tensor<int32, []>(1)];
|
| 29 |
+
tensor<int32, [1]> out_1_axes_0 = const()[name = tensor<string, []>("out_1_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
tensor<fp16, []> var_146_to_fp16 = const()[name = tensor<string, []>("op_146_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 31 |
+
tensor<fp16, [1, 384, 1, 1500]> out_1_cast_fp16 = layer_norm(axes = out_1_axes_0, epsilon = var_146_to_fp16, x = inputs_1_cast_fp16)[name = tensor<string, []>("out_1_cast_fp16")];
|
|
|
|
|
|
|
|
|
|
| 32 |
tensor<fp16, [384]> obj_1_mean_0_to_fp16 = const()[name = tensor<string, []>("obj_1_mean_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2222976)))];
|
| 33 |
tensor<fp16, [384]> obj_1_variance_0_to_fp16 = const()[name = tensor<string, []>("obj_1_variance_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2223808)))];
|
| 34 |
tensor<fp16, [384]> obj_1_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_1_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2224640)))];
|
|
|
|
| 415 |
tensor<fp16, [384]> layers_0_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3407872)))];
|
| 416 |
tensor<fp16, [1, 384, 1, 1500]> obj_3_cast_fp16 = conv(bias = layers_0_self_attn_o_proj_bias_to_fp16, dilations = var_610, groups = var_129, pad = obj_3_pad_0, pad_type = obj_3_pad_type_0, strides = var_608, weight = layers_0_self_attn_o_proj_weight_to_fp16, x = input_1_cast_fp16)[name = tensor<string, []>("obj_3_cast_fp16")];
|
| 417 |
tensor<fp16, [1, 384, 1, 1500]> inputs_3_cast_fp16 = add(x = inputs_1_cast_fp16, y = obj_3_cast_fp16)[name = tensor<string, []>("inputs_3_cast_fp16")];
|
| 418 |
+
tensor<int32, [1]> out_3_axes_0 = const()[name = tensor<string, []>("out_3_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 419 |
tensor<fp16, []> var_622_to_fp16 = const()[name = tensor<string, []>("op_622_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 420 |
+
tensor<fp16, [1, 384, 1, 1500]> out_3_cast_fp16 = layer_norm(axes = out_3_axes_0, epsilon = var_622_to_fp16, x = inputs_3_cast_fp16)[name = tensor<string, []>("out_3_cast_fp16")];
|
|
|
|
|
|
|
|
|
|
| 421 |
tensor<fp16, [384]> input_3_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_3_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3408704)))];
|
| 422 |
tensor<fp16, [384]> input_3_beta_0_to_fp16 = const()[name = tensor<string, []>("input_3_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3409536)))];
|
| 423 |
tensor<fp16, []> input_3_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_3_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
|
| 441 |
tensor<fp16, [1, 384, 1, 1500]> inputs_5_cast_fp16 = add(x = inputs_3_cast_fp16, y = hidden_states_5_cast_fp16)[name = tensor<string, []>("inputs_5_cast_fp16")];
|
| 442 |
tensor<int32, []> var_651 = const()[name = tensor<string, []>("op_651"), val = tensor<int32, []>(3)];
|
| 443 |
tensor<int32, []> var_662 = const()[name = tensor<string, []>("op_662"), val = tensor<int32, []>(1)];
|
| 444 |
+
tensor<int32, [1]> out_5_axes_0 = const()[name = tensor<string, []>("out_5_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 445 |
tensor<fp16, []> var_679_to_fp16 = const()[name = tensor<string, []>("op_679_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 446 |
+
tensor<fp16, [1, 384, 1, 1500]> out_5_cast_fp16 = layer_norm(axes = out_5_axes_0, epsilon = var_679_to_fp16, x = inputs_5_cast_fp16)[name = tensor<string, []>("out_5_cast_fp16")];
|
|
|
|
|
|
|
|
|
|
| 447 |
tensor<fp16, [384]> obj_5_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_5_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5773760)))];
|
| 448 |
tensor<fp16, [384]> obj_5_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_5_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5774592)))];
|
| 449 |
tensor<fp16, []> obj_5_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_5_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
|
| 828 |
tensor<fp16, [384]> layers_1_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6956992)))];
|
| 829 |
tensor<fp16, [1, 384, 1, 1500]> obj_7_cast_fp16 = conv(bias = layers_1_self_attn_o_proj_bias_to_fp16, dilations = var_1143, groups = var_662, pad = obj_7_pad_0, pad_type = obj_7_pad_type_0, strides = var_1141, weight = layers_1_self_attn_o_proj_weight_to_fp16, x = input_9_cast_fp16)[name = tensor<string, []>("obj_7_cast_fp16")];
|
| 830 |
tensor<fp16, [1, 384, 1, 1500]> inputs_7_cast_fp16 = add(x = inputs_5_cast_fp16, y = obj_7_cast_fp16)[name = tensor<string, []>("inputs_7_cast_fp16")];
|
| 831 |
+
tensor<int32, [1]> out_7_axes_0 = const()[name = tensor<string, []>("out_7_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 832 |
tensor<fp16, []> var_1155_to_fp16 = const()[name = tensor<string, []>("op_1155_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 833 |
+
tensor<fp16, [1, 384, 1, 1500]> out_7_cast_fp16 = layer_norm(axes = out_7_axes_0, epsilon = var_1155_to_fp16, x = inputs_7_cast_fp16)[name = tensor<string, []>("out_7_cast_fp16")];
|
|
|
|
|
|
|
|
|
|
| 834 |
tensor<fp16, [384]> input_11_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_11_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6957824)))];
|
| 835 |
tensor<fp16, [384]> input_11_beta_0_to_fp16 = const()[name = tensor<string, []>("input_11_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6958656)))];
|
| 836 |
tensor<fp16, []> input_11_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_11_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
|
| 854 |
tensor<fp16, [1, 384, 1, 1500]> inputs_9_cast_fp16 = add(x = inputs_7_cast_fp16, y = hidden_states_7_cast_fp16)[name = tensor<string, []>("inputs_9_cast_fp16")];
|
| 855 |
tensor<int32, []> var_1184 = const()[name = tensor<string, []>("op_1184"), val = tensor<int32, []>(3)];
|
| 856 |
tensor<int32, []> var_1195 = const()[name = tensor<string, []>("op_1195"), val = tensor<int32, []>(1)];
|
| 857 |
+
tensor<int32, [1]> out_9_axes_0 = const()[name = tensor<string, []>("out_9_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 858 |
tensor<fp16, []> var_1212_to_fp16 = const()[name = tensor<string, []>("op_1212_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 859 |
+
tensor<fp16, [1, 384, 1, 1500]> out_9_cast_fp16 = layer_norm(axes = out_9_axes_0, epsilon = var_1212_to_fp16, x = inputs_9_cast_fp16)[name = tensor<string, []>("out_9_cast_fp16")];
|
|
|
|
|
|
|
|
|
|
| 860 |
tensor<fp16, [384]> obj_9_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_9_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9322880)))];
|
| 861 |
tensor<fp16, [384]> obj_9_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_9_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9323712)))];
|
| 862 |
tensor<fp16, []> obj_9_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_9_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
|
| 1241 |
tensor<fp16, [384]> layers_2_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10506112)))];
|
| 1242 |
tensor<fp16, [1, 384, 1, 1500]> obj_11_cast_fp16 = conv(bias = layers_2_self_attn_o_proj_bias_to_fp16, dilations = var_1676, groups = var_1195, pad = obj_11_pad_0, pad_type = obj_11_pad_type_0, strides = var_1674, weight = layers_2_self_attn_o_proj_weight_to_fp16, x = input_17_cast_fp16)[name = tensor<string, []>("obj_11_cast_fp16")];
|
| 1243 |
tensor<fp16, [1, 384, 1, 1500]> inputs_11_cast_fp16 = add(x = inputs_9_cast_fp16, y = obj_11_cast_fp16)[name = tensor<string, []>("inputs_11_cast_fp16")];
|
| 1244 |
+
tensor<int32, [1]> out_11_axes_0 = const()[name = tensor<string, []>("out_11_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1245 |
tensor<fp16, []> var_1688_to_fp16 = const()[name = tensor<string, []>("op_1688_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 1246 |
+
tensor<fp16, [1, 384, 1, 1500]> out_11_cast_fp16 = layer_norm(axes = out_11_axes_0, epsilon = var_1688_to_fp16, x = inputs_11_cast_fp16)[name = tensor<string, []>("out_11_cast_fp16")];
|
|
|
|
|
|
|
|
|
|
| 1247 |
tensor<fp16, [384]> input_19_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_19_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10506944)))];
|
| 1248 |
tensor<fp16, [384]> input_19_beta_0_to_fp16 = const()[name = tensor<string, []>("input_19_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10507776)))];
|
| 1249 |
tensor<fp16, []> input_19_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_19_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
|
| 1267 |
tensor<fp16, [1, 384, 1, 1500]> inputs_13_cast_fp16 = add(x = inputs_11_cast_fp16, y = hidden_states_9_cast_fp16)[name = tensor<string, []>("inputs_13_cast_fp16")];
|
| 1268 |
tensor<int32, []> var_1717 = const()[name = tensor<string, []>("op_1717"), val = tensor<int32, []>(3)];
|
| 1269 |
tensor<int32, []> var_1728 = const()[name = tensor<string, []>("op_1728"), val = tensor<int32, []>(1)];
|
| 1270 |
+
tensor<int32, [1]> out_13_axes_0 = const()[name = tensor<string, []>("out_13_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1271 |
tensor<fp16, []> var_1745_to_fp16 = const()[name = tensor<string, []>("op_1745_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 1272 |
+
tensor<fp16, [1, 384, 1, 1500]> out_13_cast_fp16 = layer_norm(axes = out_13_axes_0, epsilon = var_1745_to_fp16, x = inputs_13_cast_fp16)[name = tensor<string, []>("out_13_cast_fp16")];
|
|
|
|
|
|
|
|
|
|
| 1273 |
tensor<fp16, [384]> obj_13_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_13_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12872000)))];
|
| 1274 |
tensor<fp16, [384]> obj_13_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_13_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12872832)))];
|
| 1275 |
tensor<fp16, []> obj_13_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_13_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
|
| 1654 |
tensor<fp16, [384]> layers_3_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14055232)))];
|
| 1655 |
tensor<fp16, [1, 384, 1, 1500]> obj_cast_fp16 = conv(bias = layers_3_self_attn_o_proj_bias_to_fp16, dilations = var_2209, groups = var_1728, pad = obj_pad_0, pad_type = obj_pad_type_0, strides = var_2207, weight = layers_3_self_attn_o_proj_weight_to_fp16, x = input_25_cast_fp16)[name = tensor<string, []>("obj_cast_fp16")];
|
| 1656 |
tensor<fp16, [1, 384, 1, 1500]> inputs_15_cast_fp16 = add(x = inputs_13_cast_fp16, y = obj_cast_fp16)[name = tensor<string, []>("inputs_15_cast_fp16")];
|
| 1657 |
+
tensor<int32, [1]> out_15_axes_0 = const()[name = tensor<string, []>("out_15_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1658 |
tensor<fp16, []> var_2221_to_fp16 = const()[name = tensor<string, []>("op_2221_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 1659 |
+
tensor<fp16, [1, 384, 1, 1500]> out_15_cast_fp16 = layer_norm(axes = out_15_axes_0, epsilon = var_2221_to_fp16, x = inputs_15_cast_fp16)[name = tensor<string, []>("out_15_cast_fp16")];
|
|
|
|
|
|
|
|
|
|
| 1660 |
tensor<fp16, [384]> input_27_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_27_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14056064)))];
|
| 1661 |
tensor<fp16, [384]> input_27_beta_0_to_fp16 = const()[name = tensor<string, []>("input_27_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14056896)))];
|
| 1662 |
tensor<fp16, []> input_27_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_27_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
|
| 1678 |
tensor<fp16, [384]> layers_3_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_fc2_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16420288)))];
|
| 1679 |
tensor<fp16, [1, 384, 1, 1500]> hidden_states_cast_fp16 = conv(bias = layers_3_fc2_bias_to_fp16, dilations = var_2243, groups = var_1728, pad = hidden_states_pad_0, pad_type = hidden_states_pad_type_0, strides = var_2241, weight = layers_3_fc2_weight_to_fp16, x = input_cast_fp16)[name = tensor<string, []>("hidden_states_cast_fp16")];
|
| 1680 |
tensor<fp16, [1, 384, 1, 1500]> inputs_cast_fp16 = add(x = inputs_15_cast_fp16, y = hidden_states_cast_fp16)[name = tensor<string, []>("inputs_cast_fp16")];
|
| 1681 |
+
tensor<int32, [1]> out_axes_0 = const()[name = tensor<string, []>("out_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1682 |
tensor<fp16, []> var_2259_to_fp16 = const()[name = tensor<string, []>("op_2259_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 1683 |
+
tensor<fp16, [1, 384, 1, 1500]> out_cast_fp16 = layer_norm(axes = out_axes_0, epsilon = var_2259_to_fp16, x = inputs_cast_fp16)[name = tensor<string, []>("out_cast_fp16")];
|
|
|
|
|
|
|
|
|
|
| 1684 |
tensor<fp16, [384]> encoder_output_embeds_type_fp32_gamma_0_to_fp16 = const()[name = tensor<string, []>("encoder_output_embeds_type_fp32_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16421120)))];
|
| 1685 |
tensor<fp16, [384]> encoder_output_embeds_type_fp32_beta_0_to_fp16 = const()[name = tensor<string, []>("encoder_output_embeds_type_fp32_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16421952)))];
|
| 1686 |
tensor<fp16, []> encoder_output_embeds_type_fp32_epsilon_0_to_fp16 = const()[name = tensor<string, []>("encoder_output_embeds_type_fp32_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
openai_whisper-tiny.en/AudioEncoder.mlmodelc/weights/weight.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 16422784
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:86a53cab0dcd92efa0d89803401347c8119203aac37f336d5a699c0587d01c48
|
| 3 |
size 16422784
|
openai_whisper-tiny.en/MelSpectrogram.mlmodelc/analytics/coremldata.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 243
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2fc2d0799af479af957359c81021ff6a464d3251b3415064f8d2c6403cbea68f
|
| 3 |
size 243
|
openai_whisper-tiny.en/MelSpectrogram.mlmodelc/coremldata.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 328
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c977c1199f029235ab96a7dc394e5c5c6d2b606d333f2cab46df750a4df89329
|
| 3 |
size 328
|
openai_whisper-tiny.en/MelSpectrogram.mlmodelc/metadata.json
CHANGED
|
@@ -50,8 +50,8 @@
|
|
| 50 |
},
|
| 51 |
"userDefinedMetadata" : {
|
| 52 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
| 53 |
-
"com.github.apple.coremltools.
|
| 54 |
-
"com.github.apple.coremltools.
|
| 55 |
},
|
| 56 |
"inputSchema" : [
|
| 57 |
{
|
|
|
|
| 50 |
},
|
| 51 |
"userDefinedMetadata" : {
|
| 52 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
| 53 |
+
"com.github.apple.coremltools.version" : "7.2",
|
| 54 |
+
"com.github.apple.coremltools.source" : "torch==2.2.2"
|
| 55 |
},
|
| 56 |
"inputSchema" : [
|
| 57 |
{
|
openai_whisper-tiny.en/MelSpectrogram.mlmodelc/model.mil
CHANGED
|
@@ -1,13 +1,13 @@
|
|
| 1 |
program(1.0)
|
| 2 |
-
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "5.
|
| 3 |
{
|
| 4 |
func main<ios16>(tensor<fp16, [480000]> audio) {
|
| 5 |
tensor<int32, [3]> var_10 = const()[name = tensor<string, []>("op_10"), val = tensor<int32, [3]>([1, 1, 480000])];
|
| 6 |
tensor<fp16, [1, 1, 480000]> input_1_cast_fp16 = reshape(shape = var_10, x = audio)[name = tensor<string, []>("input_1_cast_fp16")];
|
| 7 |
tensor<int32, [6]> input_3_pad_0 = const()[name = tensor<string, []>("input_3_pad_0"), val = tensor<int32, [6]>([0, 0, 0, 0, 200, 200])];
|
| 8 |
tensor<string, []> input_3_mode_0 = const()[name = tensor<string, []>("input_3_mode_0"), val = tensor<string, []>("reflect")];
|
| 9 |
-
tensor<fp16, []>
|
| 10 |
-
tensor<fp16, [1, 1, 480400]> input_3_cast_fp16 = pad(constant_val =
|
| 11 |
tensor<int32, [1]> var_22 = const()[name = tensor<string, []>("op_22"), val = tensor<int32, [1]>([480400])];
|
| 12 |
tensor<fp16, [480400]> input_cast_fp16 = reshape(shape = var_22, x = input_3_cast_fp16)[name = tensor<string, []>("input_cast_fp16")];
|
| 13 |
tensor<int32, [1]> expand_dims_0_axes_0 = const()[name = tensor<string, []>("expand_dims_0_axes_0"), val = tensor<int32, [1]>([0])];
|
|
|
|
| 1 |
program(1.0)
|
| 2 |
+
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.2.2"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "7.2"}})]
|
| 3 |
{
|
| 4 |
func main<ios16>(tensor<fp16, [480000]> audio) {
|
| 5 |
tensor<int32, [3]> var_10 = const()[name = tensor<string, []>("op_10"), val = tensor<int32, [3]>([1, 1, 480000])];
|
| 6 |
tensor<fp16, [1, 1, 480000]> input_1_cast_fp16 = reshape(shape = var_10, x = audio)[name = tensor<string, []>("input_1_cast_fp16")];
|
| 7 |
tensor<int32, [6]> input_3_pad_0 = const()[name = tensor<string, []>("input_3_pad_0"), val = tensor<int32, [6]>([0, 0, 0, 0, 200, 200])];
|
| 8 |
tensor<string, []> input_3_mode_0 = const()[name = tensor<string, []>("input_3_mode_0"), val = tensor<string, []>("reflect")];
|
| 9 |
+
tensor<fp16, []> const_1_to_fp16 = const()[name = tensor<string, []>("const_1_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
|
| 10 |
+
tensor<fp16, [1, 1, 480400]> input_3_cast_fp16 = pad(constant_val = const_1_to_fp16, mode = input_3_mode_0, pad = input_3_pad_0, x = input_1_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
|
| 11 |
tensor<int32, [1]> var_22 = const()[name = tensor<string, []>("op_22"), val = tensor<int32, [1]>([480400])];
|
| 12 |
tensor<fp16, [480400]> input_cast_fp16 = reshape(shape = var_22, x = input_3_cast_fp16)[name = tensor<string, []>("input_cast_fp16")];
|
| 13 |
tensor<int32, [1]> expand_dims_0_axes_0 = const()[name = tensor<string, []>("expand_dims_0_axes_0"), val = tensor<int32, [1]>([0])];
|
openai_whisper-tiny.en/MelSpectrogram.mlmodelc/weights/weight.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 354080
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a3afe232689fe92b1958d124f42f9ccf43e611ce1055e584190d40f11dc5a3d6
|
| 3 |
size 354080
|
openai_whisper-tiny.en/TextDecoder.mlmodelc/analytics/coremldata.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 243
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a3e8ecb0c4fc6f8c91c97b3a8b15fb84715aaa68d64fbe125553224c0c64c743
|
| 3 |
size 243
|
openai_whisper-tiny.en/TextDecoder.mlmodelc/coremldata.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 633
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d8bae9187c5fb7e29a7cb0c8aa2c753e82040ba85403c2dbad6dd30f9a6a008d
|
| 3 |
size 633
|
openai_whisper-tiny.en/TextDecoder.mlmodelc/metadata.json
CHANGED
|
@@ -51,18 +51,18 @@
|
|
| 51 |
"mlProgramOperationTypeHistogram" : {
|
| 52 |
"Split" : 2,
|
| 53 |
"Concat" : 3,
|
| 54 |
-
"Ios16.rsqrt" : 13,
|
| 55 |
-
"Ios16.mul" : 50,
|
| 56 |
"Squeeze" : 1,
|
|
|
|
|
|
|
| 57 |
"SliceByIndex" : 16,
|
| 58 |
-
"Ios16.sub" :
|
| 59 |
"Transpose" : 1,
|
| 60 |
"Ios16.conv" : 40,
|
| 61 |
-
"Ios16.add" :
|
| 62 |
"Ios16.linear" : 1,
|
| 63 |
"Ios16.matmul" : 16,
|
| 64 |
"Ios16.gelu" : 4,
|
| 65 |
-
"Ios16.reduceMean" :
|
| 66 |
"ExpandDims" : 6,
|
| 67 |
"Ios16.batchNorm" : 13,
|
| 68 |
"Ios16.gather" : 2,
|
|
@@ -85,7 +85,7 @@
|
|
| 85 |
"userDefinedMetadata" : {
|
| 86 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
| 87 |
"com.github.apple.coremltools.source" : "torch==2.2.2",
|
| 88 |
-
"com.github.apple.coremltools.version" : "7.
|
| 89 |
},
|
| 90 |
"inputSchema" : [
|
| 91 |
{
|
|
|
|
| 51 |
"mlProgramOperationTypeHistogram" : {
|
| 52 |
"Split" : 2,
|
| 53 |
"Concat" : 3,
|
|
|
|
|
|
|
| 54 |
"Squeeze" : 1,
|
| 55 |
+
"Ios16.mul" : 24,
|
| 56 |
+
"Ios16.layerNorm" : 13,
|
| 57 |
"SliceByIndex" : 16,
|
| 58 |
+
"Ios16.sub" : 1,
|
| 59 |
"Transpose" : 1,
|
| 60 |
"Ios16.conv" : 40,
|
| 61 |
+
"Ios16.add" : 25,
|
| 62 |
"Ios16.linear" : 1,
|
| 63 |
"Ios16.matmul" : 16,
|
| 64 |
"Ios16.gelu" : 4,
|
| 65 |
+
"Ios16.reduceMean" : 1,
|
| 66 |
"ExpandDims" : 6,
|
| 67 |
"Ios16.batchNorm" : 13,
|
| 68 |
"Ios16.gather" : 2,
|
|
|
|
| 85 |
"userDefinedMetadata" : {
|
| 86 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
| 87 |
"com.github.apple.coremltools.source" : "torch==2.2.2",
|
| 88 |
+
"com.github.apple.coremltools.version" : "7.2"
|
| 89 |
},
|
| 90 |
"inputSchema" : [
|
| 91 |
{
|
openai_whisper-tiny.en/TextDecoder.mlmodelc/model.mil
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
program(1.0)
|
| 2 |
-
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "5.
|
| 3 |
{
|
| 4 |
func main<ios16>(tensor<int32, [1]> cache_length, tensor<fp16, [1, 448]> decoder_key_padding_mask, tensor<fp16, [1, 384, 1, 1500]> encoder_output_embeds, tensor<int32, [1]> input_ids, tensor<fp16, [1, 1536, 1, 448]> key_cache, tensor<fp16, [1, 448]> kv_cache_update_mask, tensor<fp16, [1, 1536, 1, 448]> value_cache) {
|
| 5 |
tensor<int32, []> var_24_axis_0 = const()[name = tensor<string, []>("op_24_axis_0"), val = tensor<int32, []>(0)];
|
|
@@ -23,18 +23,9 @@ program(1.0)
|
|
| 23 |
tensor<fp16, [1, 384, 1, 448]> var_54_cast_fp16_0, tensor<fp16, [1, 384, 1, 448]> var_54_cast_fp16_1, tensor<fp16, [1, 384, 1, 448]> var_54_cast_fp16_2, tensor<fp16, [1, 384, 1, 448]> var_54_cast_fp16_3 = split(axis = var_54_axis_0, split_sizes = tile_1, x = value_cache)[name = tensor<string, []>("op_54_cast_fp16")];
|
| 24 |
tensor<int32, []> var_64 = const()[name = tensor<string, []>("op_64"), val = tensor<int32, []>(3)];
|
| 25 |
tensor<int32, []> var_71 = const()[name = tensor<string, []>("op_71"), val = tensor<int32, []>(1)];
|
| 26 |
-
tensor<
|
| 27 |
-
tensor<int32, [1]> var_84 = const()[name = tensor<string, []>("op_84"), val = tensor<int32, [1]>([1])];
|
| 28 |
-
tensor<fp16, [1, 1, 1, 1]> channels_mean_1_cast_fp16 = reduce_mean(axes = var_84, keep_dims = var_72, x = inputs_1_cast_fp16)[name = tensor<string, []>("channels_mean_1_cast_fp16")];
|
| 29 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_1_cast_fp16 = sub(x = inputs_1_cast_fp16, y = channels_mean_1_cast_fp16)[name = tensor<string, []>("zero_mean_1_cast_fp16")];
|
| 30 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_1_cast_fp16 = mul(x = zero_mean_1_cast_fp16, y = zero_mean_1_cast_fp16)[name = tensor<string, []>("zero_mean_sq_1_cast_fp16")];
|
| 31 |
-
tensor<int32, [1]> var_88 = const()[name = tensor<string, []>("op_88"), val = tensor<int32, [1]>([1])];
|
| 32 |
-
tensor<fp16, [1, 1, 1, 1]> var_89_cast_fp16 = reduce_mean(axes = var_88, keep_dims = var_72, x = zero_mean_sq_1_cast_fp16)[name = tensor<string, []>("op_89_cast_fp16")];
|
| 33 |
tensor<fp16, []> var_90_to_fp16 = const()[name = tensor<string, []>("op_90_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 34 |
-
tensor<fp16, [1,
|
| 35 |
-
tensor<fp16, []> denom_1_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_1_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
| 36 |
-
tensor<fp16, [1, 1, 1, 1]> denom_1_cast_fp16 = rsqrt(epsilon = denom_1_epsilon_0_to_fp16, x = var_91_cast_fp16)[name = tensor<string, []>("denom_1_cast_fp16")];
|
| 37 |
-
tensor<fp16, [1, 384, 1, 1]> out_1_cast_fp16 = mul(x = zero_mean_1_cast_fp16, y = denom_1_cast_fp16)[name = tensor<string, []>("out_1_cast_fp16")];
|
| 38 |
tensor<fp16, [384]> obj_1_mean_0_to_fp16 = const()[name = tensor<string, []>("obj_1_mean_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(40175808)))];
|
| 39 |
tensor<fp16, [384]> obj_1_variance_0_to_fp16 = const()[name = tensor<string, []>("obj_1_variance_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(40176640)))];
|
| 40 |
tensor<fp16, [384]> obj_1_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_1_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(40177472)))];
|
|
@@ -103,17 +94,9 @@ program(1.0)
|
|
| 103 |
tensor<fp16, [384]> layers_0_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41360704)))];
|
| 104 |
tensor<fp16, [1, 384, 1, 1]> obj_7_cast_fp16 = conv(bias = layers_0_self_attn_o_proj_bias_to_fp16, dilations = var_161, groups = var_71, pad = obj_7_pad_0, pad_type = obj_7_pad_type_0, strides = var_159, weight = layers_0_self_attn_o_proj_weight_to_fp16, x = input_1_cast_fp16)[name = tensor<string, []>("obj_7_cast_fp16")];
|
| 105 |
tensor<fp16, [1, 384, 1, 1]> inputs_3_cast_fp16 = add(x = inputs_1_cast_fp16, y = obj_7_cast_fp16)[name = tensor<string, []>("inputs_3_cast_fp16")];
|
| 106 |
-
tensor<int32, [1]>
|
| 107 |
-
tensor<fp16, [1, 1, 1, 1]> channels_mean_3_cast_fp16 = reduce_mean(axes = var_171, keep_dims = var_72, x = inputs_3_cast_fp16)[name = tensor<string, []>("channels_mean_3_cast_fp16")];
|
| 108 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_3_cast_fp16 = sub(x = inputs_3_cast_fp16, y = channels_mean_3_cast_fp16)[name = tensor<string, []>("zero_mean_3_cast_fp16")];
|
| 109 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_3_cast_fp16 = mul(x = zero_mean_3_cast_fp16, y = zero_mean_3_cast_fp16)[name = tensor<string, []>("zero_mean_sq_3_cast_fp16")];
|
| 110 |
-
tensor<int32, [1]> var_175 = const()[name = tensor<string, []>("op_175"), val = tensor<int32, [1]>([1])];
|
| 111 |
-
tensor<fp16, [1, 1, 1, 1]> var_176_cast_fp16 = reduce_mean(axes = var_175, keep_dims = var_72, x = zero_mean_sq_3_cast_fp16)[name = tensor<string, []>("op_176_cast_fp16")];
|
| 112 |
tensor<fp16, []> var_177_to_fp16 = const()[name = tensor<string, []>("op_177_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 113 |
-
tensor<fp16, [1,
|
| 114 |
-
tensor<fp16, []> denom_3_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_3_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
| 115 |
-
tensor<fp16, [1, 1, 1, 1]> denom_3_cast_fp16 = rsqrt(epsilon = denom_3_epsilon_0_to_fp16, x = var_178_cast_fp16)[name = tensor<string, []>("denom_3_cast_fp16")];
|
| 116 |
-
tensor<fp16, [1, 384, 1, 1]> out_3_cast_fp16 = mul(x = zero_mean_3_cast_fp16, y = denom_3_cast_fp16)[name = tensor<string, []>("out_3_cast_fp16")];
|
| 117 |
tensor<fp16, [384]> obj_9_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_9_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41361536)))];
|
| 118 |
tensor<fp16, [384]> obj_9_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_9_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41362368)))];
|
| 119 |
tensor<fp16, []> obj_9_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_9_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
@@ -163,17 +146,9 @@ program(1.0)
|
|
| 163 |
tensor<fp16, [384]> layers_0_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(42544768)))];
|
| 164 |
tensor<fp16, [1, 384, 1, 1]> obj_11_cast_fp16 = conv(bias = layers_0_encoder_attn_o_proj_bias_to_fp16, dilations = var_231, groups = var_71, pad = obj_11_pad_0, pad_type = obj_11_pad_type_0, strides = var_229, weight = layers_0_encoder_attn_o_proj_weight_to_fp16, x = input_3_cast_fp16)[name = tensor<string, []>("obj_11_cast_fp16")];
|
| 165 |
tensor<fp16, [1, 384, 1, 1]> inputs_5_cast_fp16 = add(x = inputs_3_cast_fp16, y = obj_11_cast_fp16)[name = tensor<string, []>("inputs_5_cast_fp16")];
|
| 166 |
-
tensor<int32, [1]>
|
| 167 |
-
tensor<fp16, [1, 1, 1, 1]> channels_mean_5_cast_fp16 = reduce_mean(axes = var_237, keep_dims = var_72, x = inputs_5_cast_fp16)[name = tensor<string, []>("channels_mean_5_cast_fp16")];
|
| 168 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_5_cast_fp16 = sub(x = inputs_5_cast_fp16, y = channels_mean_5_cast_fp16)[name = tensor<string, []>("zero_mean_5_cast_fp16")];
|
| 169 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_5_cast_fp16 = mul(x = zero_mean_5_cast_fp16, y = zero_mean_5_cast_fp16)[name = tensor<string, []>("zero_mean_sq_5_cast_fp16")];
|
| 170 |
-
tensor<int32, [1]> var_241 = const()[name = tensor<string, []>("op_241"), val = tensor<int32, [1]>([1])];
|
| 171 |
-
tensor<fp16, [1, 1, 1, 1]> var_242_cast_fp16 = reduce_mean(axes = var_241, keep_dims = var_72, x = zero_mean_sq_5_cast_fp16)[name = tensor<string, []>("op_242_cast_fp16")];
|
| 172 |
tensor<fp16, []> var_243_to_fp16 = const()[name = tensor<string, []>("op_243_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 173 |
-
tensor<fp16, [1,
|
| 174 |
-
tensor<fp16, []> denom_5_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_5_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
| 175 |
-
tensor<fp16, [1, 1, 1, 1]> denom_5_cast_fp16 = rsqrt(epsilon = denom_5_epsilon_0_to_fp16, x = var_244_cast_fp16)[name = tensor<string, []>("denom_5_cast_fp16")];
|
| 176 |
-
tensor<fp16, [1, 384, 1, 1]> out_5_cast_fp16 = mul(x = zero_mean_5_cast_fp16, y = denom_5_cast_fp16)[name = tensor<string, []>("out_5_cast_fp16")];
|
| 177 |
tensor<fp16, [384]> input_5_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_5_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(42545600)))];
|
| 178 |
tensor<fp16, [384]> input_5_beta_0_to_fp16 = const()[name = tensor<string, []>("input_5_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(42546432)))];
|
| 179 |
tensor<fp16, []> input_5_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_5_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
@@ -197,18 +172,9 @@ program(1.0)
|
|
| 197 |
tensor<fp16, [1, 384, 1, 1]> inputs_7_cast_fp16 = add(x = inputs_5_cast_fp16, y = hidden_states_3_cast_fp16)[name = tensor<string, []>("inputs_7_cast_fp16")];
|
| 198 |
tensor<int32, []> var_278 = const()[name = tensor<string, []>("op_278"), val = tensor<int32, []>(3)];
|
| 199 |
tensor<int32, []> var_285 = const()[name = tensor<string, []>("op_285"), val = tensor<int32, []>(1)];
|
| 200 |
-
tensor<
|
| 201 |
-
tensor<int32, [1]> var_298 = const()[name = tensor<string, []>("op_298"), val = tensor<int32, [1]>([1])];
|
| 202 |
-
tensor<fp16, [1, 1, 1, 1]> channels_mean_7_cast_fp16 = reduce_mean(axes = var_298, keep_dims = var_286, x = inputs_7_cast_fp16)[name = tensor<string, []>("channels_mean_7_cast_fp16")];
|
| 203 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_7_cast_fp16 = sub(x = inputs_7_cast_fp16, y = channels_mean_7_cast_fp16)[name = tensor<string, []>("zero_mean_7_cast_fp16")];
|
| 204 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_7_cast_fp16 = mul(x = zero_mean_7_cast_fp16, y = zero_mean_7_cast_fp16)[name = tensor<string, []>("zero_mean_sq_7_cast_fp16")];
|
| 205 |
-
tensor<int32, [1]> var_302 = const()[name = tensor<string, []>("op_302"), val = tensor<int32, [1]>([1])];
|
| 206 |
-
tensor<fp16, [1, 1, 1, 1]> var_303_cast_fp16 = reduce_mean(axes = var_302, keep_dims = var_286, x = zero_mean_sq_7_cast_fp16)[name = tensor<string, []>("op_303_cast_fp16")];
|
| 207 |
tensor<fp16, []> var_304_to_fp16 = const()[name = tensor<string, []>("op_304_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 208 |
-
tensor<fp16, [1,
|
| 209 |
-
tensor<fp16, []> denom_7_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_7_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
| 210 |
-
tensor<fp16, [1, 1, 1, 1]> denom_7_cast_fp16 = rsqrt(epsilon = denom_7_epsilon_0_to_fp16, x = var_305_cast_fp16)[name = tensor<string, []>("denom_7_cast_fp16")];
|
| 211 |
-
tensor<fp16, [1, 384, 1, 1]> out_7_cast_fp16 = mul(x = zero_mean_7_cast_fp16, y = denom_7_cast_fp16)[name = tensor<string, []>("out_7_cast_fp16")];
|
| 212 |
tensor<fp16, [384]> obj_15_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_15_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(44910656)))];
|
| 213 |
tensor<fp16, [384]> obj_15_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_15_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(44911488)))];
|
| 214 |
tensor<fp16, []> obj_15_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_15_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
@@ -265,17 +231,9 @@ program(1.0)
|
|
| 265 |
tensor<fp16, [384]> layers_1_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(46093888)))];
|
| 266 |
tensor<fp16, [1, 384, 1, 1]> obj_21_cast_fp16 = conv(bias = layers_1_self_attn_o_proj_bias_to_fp16, dilations = var_375, groups = var_285, pad = obj_21_pad_0, pad_type = obj_21_pad_type_0, strides = var_373, weight = layers_1_self_attn_o_proj_weight_to_fp16, x = input_11_cast_fp16)[name = tensor<string, []>("obj_21_cast_fp16")];
|
| 267 |
tensor<fp16, [1, 384, 1, 1]> inputs_9_cast_fp16 = add(x = inputs_7_cast_fp16, y = obj_21_cast_fp16)[name = tensor<string, []>("inputs_9_cast_fp16")];
|
| 268 |
-
tensor<int32, [1]>
|
| 269 |
-
tensor<fp16, [1, 1, 1, 1]> channels_mean_9_cast_fp16 = reduce_mean(axes = var_385, keep_dims = var_286, x = inputs_9_cast_fp16)[name = tensor<string, []>("channels_mean_9_cast_fp16")];
|
| 270 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_9_cast_fp16 = sub(x = inputs_9_cast_fp16, y = channels_mean_9_cast_fp16)[name = tensor<string, []>("zero_mean_9_cast_fp16")];
|
| 271 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_9_cast_fp16 = mul(x = zero_mean_9_cast_fp16, y = zero_mean_9_cast_fp16)[name = tensor<string, []>("zero_mean_sq_9_cast_fp16")];
|
| 272 |
-
tensor<int32, [1]> var_389 = const()[name = tensor<string, []>("op_389"), val = tensor<int32, [1]>([1])];
|
| 273 |
-
tensor<fp16, [1, 1, 1, 1]> var_390_cast_fp16 = reduce_mean(axes = var_389, keep_dims = var_286, x = zero_mean_sq_9_cast_fp16)[name = tensor<string, []>("op_390_cast_fp16")];
|
| 274 |
tensor<fp16, []> var_391_to_fp16 = const()[name = tensor<string, []>("op_391_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 275 |
-
tensor<fp16, [1,
|
| 276 |
-
tensor<fp16, []> denom_9_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_9_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
| 277 |
-
tensor<fp16, [1, 1, 1, 1]> denom_9_cast_fp16 = rsqrt(epsilon = denom_9_epsilon_0_to_fp16, x = var_392_cast_fp16)[name = tensor<string, []>("denom_9_cast_fp16")];
|
| 278 |
-
tensor<fp16, [1, 384, 1, 1]> out_9_cast_fp16 = mul(x = zero_mean_9_cast_fp16, y = denom_9_cast_fp16)[name = tensor<string, []>("out_9_cast_fp16")];
|
| 279 |
tensor<fp16, [384]> obj_23_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_23_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(46094720)))];
|
| 280 |
tensor<fp16, [384]> obj_23_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_23_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(46095552)))];
|
| 281 |
tensor<fp16, []> obj_23_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_23_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
@@ -325,17 +283,9 @@ program(1.0)
|
|
| 325 |
tensor<fp16, [384]> layers_1_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(47277952)))];
|
| 326 |
tensor<fp16, [1, 384, 1, 1]> obj_25_cast_fp16 = conv(bias = layers_1_encoder_attn_o_proj_bias_to_fp16, dilations = var_445, groups = var_285, pad = obj_25_pad_0, pad_type = obj_25_pad_type_0, strides = var_443, weight = layers_1_encoder_attn_o_proj_weight_to_fp16, x = input_13_cast_fp16)[name = tensor<string, []>("obj_25_cast_fp16")];
|
| 327 |
tensor<fp16, [1, 384, 1, 1]> inputs_11_cast_fp16 = add(x = inputs_9_cast_fp16, y = obj_25_cast_fp16)[name = tensor<string, []>("inputs_11_cast_fp16")];
|
| 328 |
-
tensor<int32, [1]>
|
| 329 |
-
tensor<fp16, [1, 1, 1, 1]> channels_mean_11_cast_fp16 = reduce_mean(axes = var_454, keep_dims = var_286, x = inputs_11_cast_fp16)[name = tensor<string, []>("channels_mean_11_cast_fp16")];
|
| 330 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_11_cast_fp16 = sub(x = inputs_11_cast_fp16, y = channels_mean_11_cast_fp16)[name = tensor<string, []>("zero_mean_11_cast_fp16")];
|
| 331 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_11_cast_fp16 = mul(x = zero_mean_11_cast_fp16, y = zero_mean_11_cast_fp16)[name = tensor<string, []>("zero_mean_sq_11_cast_fp16")];
|
| 332 |
-
tensor<int32, [1]> var_458 = const()[name = tensor<string, []>("op_458"), val = tensor<int32, [1]>([1])];
|
| 333 |
-
tensor<fp16, [1, 1, 1, 1]> var_459_cast_fp16 = reduce_mean(axes = var_458, keep_dims = var_286, x = zero_mean_sq_11_cast_fp16)[name = tensor<string, []>("op_459_cast_fp16")];
|
| 334 |
tensor<fp16, []> var_460_to_fp16 = const()[name = tensor<string, []>("op_460_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 335 |
-
tensor<fp16, [1,
|
| 336 |
-
tensor<fp16, []> denom_11_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_11_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
| 337 |
-
tensor<fp16, [1, 1, 1, 1]> denom_11_cast_fp16 = rsqrt(epsilon = denom_11_epsilon_0_to_fp16, x = var_461_cast_fp16)[name = tensor<string, []>("denom_11_cast_fp16")];
|
| 338 |
-
tensor<fp16, [1, 384, 1, 1]> out_11_cast_fp16 = mul(x = zero_mean_11_cast_fp16, y = denom_11_cast_fp16)[name = tensor<string, []>("out_11_cast_fp16")];
|
| 339 |
tensor<fp16, [384]> input_15_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_15_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(47278784)))];
|
| 340 |
tensor<fp16, [384]> input_15_beta_0_to_fp16 = const()[name = tensor<string, []>("input_15_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(47279616)))];
|
| 341 |
tensor<fp16, []> input_15_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_15_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
@@ -359,18 +309,9 @@ program(1.0)
|
|
| 359 |
tensor<fp16, [1, 384, 1, 1]> inputs_13_cast_fp16 = add(x = inputs_11_cast_fp16, y = hidden_states_5_cast_fp16)[name = tensor<string, []>("inputs_13_cast_fp16")];
|
| 360 |
tensor<int32, []> var_496 = const()[name = tensor<string, []>("op_496"), val = tensor<int32, []>(3)];
|
| 361 |
tensor<int32, []> var_503 = const()[name = tensor<string, []>("op_503"), val = tensor<int32, []>(1)];
|
| 362 |
-
tensor<
|
| 363 |
-
tensor<int32, [1]> var_516 = const()[name = tensor<string, []>("op_516"), val = tensor<int32, [1]>([1])];
|
| 364 |
-
tensor<fp16, [1, 1, 1, 1]> channels_mean_13_cast_fp16 = reduce_mean(axes = var_516, keep_dims = var_504, x = inputs_13_cast_fp16)[name = tensor<string, []>("channels_mean_13_cast_fp16")];
|
| 365 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_13_cast_fp16 = sub(x = inputs_13_cast_fp16, y = channels_mean_13_cast_fp16)[name = tensor<string, []>("zero_mean_13_cast_fp16")];
|
| 366 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_13_cast_fp16 = mul(x = zero_mean_13_cast_fp16, y = zero_mean_13_cast_fp16)[name = tensor<string, []>("zero_mean_sq_13_cast_fp16")];
|
| 367 |
-
tensor<int32, [1]> var_520 = const()[name = tensor<string, []>("op_520"), val = tensor<int32, [1]>([1])];
|
| 368 |
-
tensor<fp16, [1, 1, 1, 1]> var_521_cast_fp16 = reduce_mean(axes = var_520, keep_dims = var_504, x = zero_mean_sq_13_cast_fp16)[name = tensor<string, []>("op_521_cast_fp16")];
|
| 369 |
tensor<fp16, []> var_522_to_fp16 = const()[name = tensor<string, []>("op_522_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 370 |
-
tensor<fp16, [1,
|
| 371 |
-
tensor<fp16, []> denom_13_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_13_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
| 372 |
-
tensor<fp16, [1, 1, 1, 1]> denom_13_cast_fp16 = rsqrt(epsilon = denom_13_epsilon_0_to_fp16, x = var_523_cast_fp16)[name = tensor<string, []>("denom_13_cast_fp16")];
|
| 373 |
-
tensor<fp16, [1, 384, 1, 1]> out_13_cast_fp16 = mul(x = zero_mean_13_cast_fp16, y = denom_13_cast_fp16)[name = tensor<string, []>("out_13_cast_fp16")];
|
| 374 |
tensor<fp16, [384]> obj_29_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_29_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(49643840)))];
|
| 375 |
tensor<fp16, [384]> obj_29_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_29_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(49644672)))];
|
| 376 |
tensor<fp16, []> obj_29_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_29_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
@@ -427,17 +368,9 @@ program(1.0)
|
|
| 427 |
tensor<fp16, [384]> layers_2_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(50827072)))];
|
| 428 |
tensor<fp16, [1, 384, 1, 1]> obj_35_cast_fp16 = conv(bias = layers_2_self_attn_o_proj_bias_to_fp16, dilations = var_593, groups = var_503, pad = obj_35_pad_0, pad_type = obj_35_pad_type_0, strides = var_591, weight = layers_2_self_attn_o_proj_weight_to_fp16, x = input_21_cast_fp16)[name = tensor<string, []>("obj_35_cast_fp16")];
|
| 429 |
tensor<fp16, [1, 384, 1, 1]> inputs_15_cast_fp16 = add(x = inputs_13_cast_fp16, y = obj_35_cast_fp16)[name = tensor<string, []>("inputs_15_cast_fp16")];
|
| 430 |
-
tensor<int32, [1]>
|
| 431 |
-
tensor<fp16, [1, 1, 1, 1]> channels_mean_15_cast_fp16 = reduce_mean(axes = var_603, keep_dims = var_504, x = inputs_15_cast_fp16)[name = tensor<string, []>("channels_mean_15_cast_fp16")];
|
| 432 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_15_cast_fp16 = sub(x = inputs_15_cast_fp16, y = channels_mean_15_cast_fp16)[name = tensor<string, []>("zero_mean_15_cast_fp16")];
|
| 433 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_15_cast_fp16 = mul(x = zero_mean_15_cast_fp16, y = zero_mean_15_cast_fp16)[name = tensor<string, []>("zero_mean_sq_15_cast_fp16")];
|
| 434 |
-
tensor<int32, [1]> var_607 = const()[name = tensor<string, []>("op_607"), val = tensor<int32, [1]>([1])];
|
| 435 |
-
tensor<fp16, [1, 1, 1, 1]> var_608_cast_fp16 = reduce_mean(axes = var_607, keep_dims = var_504, x = zero_mean_sq_15_cast_fp16)[name = tensor<string, []>("op_608_cast_fp16")];
|
| 436 |
tensor<fp16, []> var_609_to_fp16 = const()[name = tensor<string, []>("op_609_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 437 |
-
tensor<fp16, [1,
|
| 438 |
-
tensor<fp16, []> denom_15_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_15_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
| 439 |
-
tensor<fp16, [1, 1, 1, 1]> denom_15_cast_fp16 = rsqrt(epsilon = denom_15_epsilon_0_to_fp16, x = var_610_cast_fp16)[name = tensor<string, []>("denom_15_cast_fp16")];
|
| 440 |
-
tensor<fp16, [1, 384, 1, 1]> out_15_cast_fp16 = mul(x = zero_mean_15_cast_fp16, y = denom_15_cast_fp16)[name = tensor<string, []>("out_15_cast_fp16")];
|
| 441 |
tensor<fp16, [384]> obj_37_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_37_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(50827904)))];
|
| 442 |
tensor<fp16, [384]> obj_37_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_37_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(50828736)))];
|
| 443 |
tensor<fp16, []> obj_37_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_37_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
@@ -487,17 +420,9 @@ program(1.0)
|
|
| 487 |
tensor<fp16, [384]> layers_2_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(52011136)))];
|
| 488 |
tensor<fp16, [1, 384, 1, 1]> obj_39_cast_fp16 = conv(bias = layers_2_encoder_attn_o_proj_bias_to_fp16, dilations = var_663, groups = var_503, pad = obj_39_pad_0, pad_type = obj_39_pad_type_0, strides = var_661, weight = layers_2_encoder_attn_o_proj_weight_to_fp16, x = input_23_cast_fp16)[name = tensor<string, []>("obj_39_cast_fp16")];
|
| 489 |
tensor<fp16, [1, 384, 1, 1]> inputs_17_cast_fp16 = add(x = inputs_15_cast_fp16, y = obj_39_cast_fp16)[name = tensor<string, []>("inputs_17_cast_fp16")];
|
| 490 |
-
tensor<int32, [1]>
|
| 491 |
-
tensor<fp16, [1, 1, 1, 1]> channels_mean_17_cast_fp16 = reduce_mean(axes = var_672, keep_dims = var_504, x = inputs_17_cast_fp16)[name = tensor<string, []>("channels_mean_17_cast_fp16")];
|
| 492 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_17_cast_fp16 = sub(x = inputs_17_cast_fp16, y = channels_mean_17_cast_fp16)[name = tensor<string, []>("zero_mean_17_cast_fp16")];
|
| 493 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_17_cast_fp16 = mul(x = zero_mean_17_cast_fp16, y = zero_mean_17_cast_fp16)[name = tensor<string, []>("zero_mean_sq_17_cast_fp16")];
|
| 494 |
-
tensor<int32, [1]> var_676 = const()[name = tensor<string, []>("op_676"), val = tensor<int32, [1]>([1])];
|
| 495 |
-
tensor<fp16, [1, 1, 1, 1]> var_677_cast_fp16 = reduce_mean(axes = var_676, keep_dims = var_504, x = zero_mean_sq_17_cast_fp16)[name = tensor<string, []>("op_677_cast_fp16")];
|
| 496 |
tensor<fp16, []> var_678_to_fp16 = const()[name = tensor<string, []>("op_678_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 497 |
-
tensor<fp16, [1,
|
| 498 |
-
tensor<fp16, []> denom_17_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_17_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
| 499 |
-
tensor<fp16, [1, 1, 1, 1]> denom_17_cast_fp16 = rsqrt(epsilon = denom_17_epsilon_0_to_fp16, x = var_679_cast_fp16)[name = tensor<string, []>("denom_17_cast_fp16")];
|
| 500 |
-
tensor<fp16, [1, 384, 1, 1]> out_17_cast_fp16 = mul(x = zero_mean_17_cast_fp16, y = denom_17_cast_fp16)[name = tensor<string, []>("out_17_cast_fp16")];
|
| 501 |
tensor<fp16, [384]> input_25_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_25_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(52011968)))];
|
| 502 |
tensor<fp16, [384]> input_25_beta_0_to_fp16 = const()[name = tensor<string, []>("input_25_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(52012800)))];
|
| 503 |
tensor<fp16, []> input_25_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_25_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
@@ -521,18 +446,9 @@ program(1.0)
|
|
| 521 |
tensor<fp16, [1, 384, 1, 1]> inputs_19_cast_fp16 = add(x = inputs_17_cast_fp16, y = hidden_states_7_cast_fp16)[name = tensor<string, []>("inputs_19_cast_fp16")];
|
| 522 |
tensor<int32, []> var_714 = const()[name = tensor<string, []>("op_714"), val = tensor<int32, []>(3)];
|
| 523 |
tensor<int32, []> var_721 = const()[name = tensor<string, []>("op_721"), val = tensor<int32, []>(1)];
|
| 524 |
-
tensor<
|
| 525 |
-
tensor<int32, [1]> var_734 = const()[name = tensor<string, []>("op_734"), val = tensor<int32, [1]>([1])];
|
| 526 |
-
tensor<fp16, [1, 1, 1, 1]> channels_mean_19_cast_fp16 = reduce_mean(axes = var_734, keep_dims = var_722, x = inputs_19_cast_fp16)[name = tensor<string, []>("channels_mean_19_cast_fp16")];
|
| 527 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_19_cast_fp16 = sub(x = inputs_19_cast_fp16, y = channels_mean_19_cast_fp16)[name = tensor<string, []>("zero_mean_19_cast_fp16")];
|
| 528 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_19_cast_fp16 = mul(x = zero_mean_19_cast_fp16, y = zero_mean_19_cast_fp16)[name = tensor<string, []>("zero_mean_sq_19_cast_fp16")];
|
| 529 |
-
tensor<int32, [1]> var_738 = const()[name = tensor<string, []>("op_738"), val = tensor<int32, [1]>([1])];
|
| 530 |
-
tensor<fp16, [1, 1, 1, 1]> var_739_cast_fp16 = reduce_mean(axes = var_738, keep_dims = var_722, x = zero_mean_sq_19_cast_fp16)[name = tensor<string, []>("op_739_cast_fp16")];
|
| 531 |
tensor<fp16, []> var_740_to_fp16 = const()[name = tensor<string, []>("op_740_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 532 |
-
tensor<fp16, [1,
|
| 533 |
-
tensor<fp16, []> denom_19_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_19_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
| 534 |
-
tensor<fp16, [1, 1, 1, 1]> denom_19_cast_fp16 = rsqrt(epsilon = denom_19_epsilon_0_to_fp16, x = var_741_cast_fp16)[name = tensor<string, []>("denom_19_cast_fp16")];
|
| 535 |
-
tensor<fp16, [1, 384, 1, 1]> out_19_cast_fp16 = mul(x = zero_mean_19_cast_fp16, y = denom_19_cast_fp16)[name = tensor<string, []>("out_19_cast_fp16")];
|
| 536 |
tensor<fp16, [384]> obj_43_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_43_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(54377024)))];
|
| 537 |
tensor<fp16, [384]> obj_43_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_43_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(54377856)))];
|
| 538 |
tensor<fp16, []> obj_43_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_43_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
@@ -589,17 +505,9 @@ program(1.0)
|
|
| 589 |
tensor<fp16, [384]> layers_3_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(55560256)))];
|
| 590 |
tensor<fp16, [1, 384, 1, 1]> obj_49_cast_fp16 = conv(bias = layers_3_self_attn_o_proj_bias_to_fp16, dilations = var_811, groups = var_721, pad = obj_49_pad_0, pad_type = obj_49_pad_type_0, strides = var_809, weight = layers_3_self_attn_o_proj_weight_to_fp16, x = input_31_cast_fp16)[name = tensor<string, []>("obj_49_cast_fp16")];
|
| 591 |
tensor<fp16, [1, 384, 1, 1]> inputs_21_cast_fp16 = add(x = inputs_19_cast_fp16, y = obj_49_cast_fp16)[name = tensor<string, []>("inputs_21_cast_fp16")];
|
| 592 |
-
tensor<int32, [1]>
|
| 593 |
-
tensor<fp16, [1, 1, 1, 1]> channels_mean_21_cast_fp16 = reduce_mean(axes = var_821, keep_dims = var_722, x = inputs_21_cast_fp16)[name = tensor<string, []>("channels_mean_21_cast_fp16")];
|
| 594 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_21_cast_fp16 = sub(x = inputs_21_cast_fp16, y = channels_mean_21_cast_fp16)[name = tensor<string, []>("zero_mean_21_cast_fp16")];
|
| 595 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_21_cast_fp16 = mul(x = zero_mean_21_cast_fp16, y = zero_mean_21_cast_fp16)[name = tensor<string, []>("zero_mean_sq_21_cast_fp16")];
|
| 596 |
-
tensor<int32, [1]> var_825 = const()[name = tensor<string, []>("op_825"), val = tensor<int32, [1]>([1])];
|
| 597 |
-
tensor<fp16, [1, 1, 1, 1]> var_826_cast_fp16 = reduce_mean(axes = var_825, keep_dims = var_722, x = zero_mean_sq_21_cast_fp16)[name = tensor<string, []>("op_826_cast_fp16")];
|
| 598 |
tensor<fp16, []> var_827_to_fp16 = const()[name = tensor<string, []>("op_827_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 599 |
-
tensor<fp16, [1,
|
| 600 |
-
tensor<fp16, []> denom_21_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_21_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
| 601 |
-
tensor<fp16, [1, 1, 1, 1]> denom_21_cast_fp16 = rsqrt(epsilon = denom_21_epsilon_0_to_fp16, x = var_828_cast_fp16)[name = tensor<string, []>("denom_21_cast_fp16")];
|
| 602 |
-
tensor<fp16, [1, 384, 1, 1]> out_21_cast_fp16 = mul(x = zero_mean_21_cast_fp16, y = denom_21_cast_fp16)[name = tensor<string, []>("out_21_cast_fp16")];
|
| 603 |
tensor<fp16, [384]> obj_51_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_51_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(55561088)))];
|
| 604 |
tensor<fp16, [384]> obj_51_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_51_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(55561920)))];
|
| 605 |
tensor<fp16, []> obj_51_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_51_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
@@ -649,17 +557,9 @@ program(1.0)
|
|
| 649 |
tensor<fp16, [384]> layers_3_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(56744320)))];
|
| 650 |
tensor<fp16, [1, 384, 1, 1]> obj_53_cast_fp16 = conv(bias = layers_3_encoder_attn_o_proj_bias_to_fp16, dilations = var_881, groups = var_721, pad = obj_53_pad_0, pad_type = obj_53_pad_type_0, strides = var_879, weight = layers_3_encoder_attn_o_proj_weight_to_fp16, x = input_33_cast_fp16)[name = tensor<string, []>("obj_53_cast_fp16")];
|
| 651 |
tensor<fp16, [1, 384, 1, 1]> inputs_23_cast_fp16 = add(x = inputs_21_cast_fp16, y = obj_53_cast_fp16)[name = tensor<string, []>("inputs_23_cast_fp16")];
|
| 652 |
-
tensor<int32, [1]>
|
| 653 |
-
tensor<fp16, [1, 1, 1, 1]> channels_mean_23_cast_fp16 = reduce_mean(axes = var_890, keep_dims = var_722, x = inputs_23_cast_fp16)[name = tensor<string, []>("channels_mean_23_cast_fp16")];
|
| 654 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_23_cast_fp16 = sub(x = inputs_23_cast_fp16, y = channels_mean_23_cast_fp16)[name = tensor<string, []>("zero_mean_23_cast_fp16")];
|
| 655 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_23_cast_fp16 = mul(x = zero_mean_23_cast_fp16, y = zero_mean_23_cast_fp16)[name = tensor<string, []>("zero_mean_sq_23_cast_fp16")];
|
| 656 |
-
tensor<int32, [1]> var_894 = const()[name = tensor<string, []>("op_894"), val = tensor<int32, [1]>([1])];
|
| 657 |
-
tensor<fp16, [1, 1, 1, 1]> var_895_cast_fp16 = reduce_mean(axes = var_894, keep_dims = var_722, x = zero_mean_sq_23_cast_fp16)[name = tensor<string, []>("op_895_cast_fp16")];
|
| 658 |
tensor<fp16, []> var_896_to_fp16 = const()[name = tensor<string, []>("op_896_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 659 |
-
tensor<fp16, [1,
|
| 660 |
-
tensor<fp16, []> denom_23_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_23_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
| 661 |
-
tensor<fp16, [1, 1, 1, 1]> denom_23_cast_fp16 = rsqrt(epsilon = denom_23_epsilon_0_to_fp16, x = var_897_cast_fp16)[name = tensor<string, []>("denom_23_cast_fp16")];
|
| 662 |
-
tensor<fp16, [1, 384, 1, 1]> out_23_cast_fp16 = mul(x = zero_mean_23_cast_fp16, y = denom_23_cast_fp16)[name = tensor<string, []>("out_23_cast_fp16")];
|
| 663 |
tensor<fp16, [384]> input_35_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_35_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(56745152)))];
|
| 664 |
tensor<fp16, [384]> input_35_beta_0_to_fp16 = const()[name = tensor<string, []>("input_35_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(56745984)))];
|
| 665 |
tensor<fp16, []> input_35_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_35_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
@@ -681,18 +581,9 @@ program(1.0)
|
|
| 681 |
tensor<fp16, [384]> layers_3_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_fc2_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(59109376)))];
|
| 682 |
tensor<fp16, [1, 384, 1, 1]> hidden_states_9_cast_fp16 = conv(bias = layers_3_fc2_bias_to_fp16, dilations = var_918, groups = var_721, pad = hidden_states_9_pad_0, pad_type = hidden_states_9_pad_type_0, strides = var_916, weight = layers_3_fc2_weight_to_fp16, x = input_cast_fp16)[name = tensor<string, []>("hidden_states_9_cast_fp16")];
|
| 683 |
tensor<fp16, [1, 384, 1, 1]> inputs_cast_fp16 = add(x = inputs_23_cast_fp16, y = hidden_states_9_cast_fp16)[name = tensor<string, []>("inputs_cast_fp16")];
|
| 684 |
-
tensor<
|
| 685 |
-
tensor<int32, [1]> var_933 = const()[name = tensor<string, []>("op_933"), val = tensor<int32, [1]>([1])];
|
| 686 |
-
tensor<fp16, [1, 1, 1, 1]> channels_mean_cast_fp16 = reduce_mean(axes = var_933, keep_dims = var_929, x = inputs_cast_fp16)[name = tensor<string, []>("channels_mean_cast_fp16")];
|
| 687 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_cast_fp16 = sub(x = inputs_cast_fp16, y = channels_mean_cast_fp16)[name = tensor<string, []>("zero_mean_cast_fp16")];
|
| 688 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_cast_fp16 = mul(x = zero_mean_cast_fp16, y = zero_mean_cast_fp16)[name = tensor<string, []>("zero_mean_sq_cast_fp16")];
|
| 689 |
-
tensor<int32, [1]> var_937 = const()[name = tensor<string, []>("op_937"), val = tensor<int32, [1]>([1])];
|
| 690 |
-
tensor<fp16, [1, 1, 1, 1]> var_938_cast_fp16 = reduce_mean(axes = var_937, keep_dims = var_929, x = zero_mean_sq_cast_fp16)[name = tensor<string, []>("op_938_cast_fp16")];
|
| 691 |
tensor<fp16, []> var_939_to_fp16 = const()[name = tensor<string, []>("op_939_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 692 |
-
tensor<fp16, [1,
|
| 693 |
-
tensor<fp16, []> denom_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
| 694 |
-
tensor<fp16, [1, 1, 1, 1]> denom_cast_fp16 = rsqrt(epsilon = denom_epsilon_0_to_fp16, x = var_940_cast_fp16)[name = tensor<string, []>("denom_cast_fp16")];
|
| 695 |
-
tensor<fp16, [1, 384, 1, 1]> out_cast_fp16 = mul(x = zero_mean_cast_fp16, y = denom_cast_fp16)[name = tensor<string, []>("out_cast_fp16")];
|
| 696 |
tensor<fp16, [384]> hidden_states_gamma_0_to_fp16 = const()[name = tensor<string, []>("hidden_states_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(59110208)))];
|
| 697 |
tensor<fp16, [384]> hidden_states_beta_0_to_fp16 = const()[name = tensor<string, []>("hidden_states_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(59111040)))];
|
| 698 |
tensor<fp16, []> hidden_states_epsilon_0_to_fp16 = const()[name = tensor<string, []>("hidden_states_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
|
| 1 |
program(1.0)
|
| 2 |
+
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.2.2"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "7.2"}})]
|
| 3 |
{
|
| 4 |
func main<ios16>(tensor<int32, [1]> cache_length, tensor<fp16, [1, 448]> decoder_key_padding_mask, tensor<fp16, [1, 384, 1, 1500]> encoder_output_embeds, tensor<int32, [1]> input_ids, tensor<fp16, [1, 1536, 1, 448]> key_cache, tensor<fp16, [1, 448]> kv_cache_update_mask, tensor<fp16, [1, 1536, 1, 448]> value_cache) {
|
| 5 |
tensor<int32, []> var_24_axis_0 = const()[name = tensor<string, []>("op_24_axis_0"), val = tensor<int32, []>(0)];
|
|
|
|
| 23 |
tensor<fp16, [1, 384, 1, 448]> var_54_cast_fp16_0, tensor<fp16, [1, 384, 1, 448]> var_54_cast_fp16_1, tensor<fp16, [1, 384, 1, 448]> var_54_cast_fp16_2, tensor<fp16, [1, 384, 1, 448]> var_54_cast_fp16_3 = split(axis = var_54_axis_0, split_sizes = tile_1, x = value_cache)[name = tensor<string, []>("op_54_cast_fp16")];
|
| 24 |
tensor<int32, []> var_64 = const()[name = tensor<string, []>("op_64"), val = tensor<int32, []>(3)];
|
| 25 |
tensor<int32, []> var_71 = const()[name = tensor<string, []>("op_71"), val = tensor<int32, []>(1)];
|
| 26 |
+
tensor<int32, [1]> out_1_axes_0 = const()[name = tensor<string, []>("out_1_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
tensor<fp16, []> var_90_to_fp16 = const()[name = tensor<string, []>("op_90_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 28 |
+
tensor<fp16, [1, 384, 1, 1]> out_1_cast_fp16 = layer_norm(axes = out_1_axes_0, epsilon = var_90_to_fp16, x = inputs_1_cast_fp16)[name = tensor<string, []>("out_1_cast_fp16")];
|
|
|
|
|
|
|
|
|
|
| 29 |
tensor<fp16, [384]> obj_1_mean_0_to_fp16 = const()[name = tensor<string, []>("obj_1_mean_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(40175808)))];
|
| 30 |
tensor<fp16, [384]> obj_1_variance_0_to_fp16 = const()[name = tensor<string, []>("obj_1_variance_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(40176640)))];
|
| 31 |
tensor<fp16, [384]> obj_1_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_1_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(40177472)))];
|
|
|
|
| 94 |
tensor<fp16, [384]> layers_0_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41360704)))];
|
| 95 |
tensor<fp16, [1, 384, 1, 1]> obj_7_cast_fp16 = conv(bias = layers_0_self_attn_o_proj_bias_to_fp16, dilations = var_161, groups = var_71, pad = obj_7_pad_0, pad_type = obj_7_pad_type_0, strides = var_159, weight = layers_0_self_attn_o_proj_weight_to_fp16, x = input_1_cast_fp16)[name = tensor<string, []>("obj_7_cast_fp16")];
|
| 96 |
tensor<fp16, [1, 384, 1, 1]> inputs_3_cast_fp16 = add(x = inputs_1_cast_fp16, y = obj_7_cast_fp16)[name = tensor<string, []>("inputs_3_cast_fp16")];
|
| 97 |
+
tensor<int32, [1]> out_3_axes_0 = const()[name = tensor<string, []>("out_3_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
tensor<fp16, []> var_177_to_fp16 = const()[name = tensor<string, []>("op_177_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 99 |
+
tensor<fp16, [1, 384, 1, 1]> out_3_cast_fp16 = layer_norm(axes = out_3_axes_0, epsilon = var_177_to_fp16, x = inputs_3_cast_fp16)[name = tensor<string, []>("out_3_cast_fp16")];
|
|
|
|
|
|
|
|
|
|
| 100 |
tensor<fp16, [384]> obj_9_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_9_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41361536)))];
|
| 101 |
tensor<fp16, [384]> obj_9_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_9_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41362368)))];
|
| 102 |
tensor<fp16, []> obj_9_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_9_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
|
| 146 |
tensor<fp16, [384]> layers_0_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(42544768)))];
|
| 147 |
tensor<fp16, [1, 384, 1, 1]> obj_11_cast_fp16 = conv(bias = layers_0_encoder_attn_o_proj_bias_to_fp16, dilations = var_231, groups = var_71, pad = obj_11_pad_0, pad_type = obj_11_pad_type_0, strides = var_229, weight = layers_0_encoder_attn_o_proj_weight_to_fp16, x = input_3_cast_fp16)[name = tensor<string, []>("obj_11_cast_fp16")];
|
| 148 |
tensor<fp16, [1, 384, 1, 1]> inputs_5_cast_fp16 = add(x = inputs_3_cast_fp16, y = obj_11_cast_fp16)[name = tensor<string, []>("inputs_5_cast_fp16")];
|
| 149 |
+
tensor<int32, [1]> out_5_axes_0 = const()[name = tensor<string, []>("out_5_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
tensor<fp16, []> var_243_to_fp16 = const()[name = tensor<string, []>("op_243_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 151 |
+
tensor<fp16, [1, 384, 1, 1]> out_5_cast_fp16 = layer_norm(axes = out_5_axes_0, epsilon = var_243_to_fp16, x = inputs_5_cast_fp16)[name = tensor<string, []>("out_5_cast_fp16")];
|
|
|
|
|
|
|
|
|
|
| 152 |
tensor<fp16, [384]> input_5_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_5_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(42545600)))];
|
| 153 |
tensor<fp16, [384]> input_5_beta_0_to_fp16 = const()[name = tensor<string, []>("input_5_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(42546432)))];
|
| 154 |
tensor<fp16, []> input_5_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_5_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
|
| 172 |
tensor<fp16, [1, 384, 1, 1]> inputs_7_cast_fp16 = add(x = inputs_5_cast_fp16, y = hidden_states_3_cast_fp16)[name = tensor<string, []>("inputs_7_cast_fp16")];
|
| 173 |
tensor<int32, []> var_278 = const()[name = tensor<string, []>("op_278"), val = tensor<int32, []>(3)];
|
| 174 |
tensor<int32, []> var_285 = const()[name = tensor<string, []>("op_285"), val = tensor<int32, []>(1)];
|
| 175 |
+
tensor<int32, [1]> out_7_axes_0 = const()[name = tensor<string, []>("out_7_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
tensor<fp16, []> var_304_to_fp16 = const()[name = tensor<string, []>("op_304_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 177 |
+
tensor<fp16, [1, 384, 1, 1]> out_7_cast_fp16 = layer_norm(axes = out_7_axes_0, epsilon = var_304_to_fp16, x = inputs_7_cast_fp16)[name = tensor<string, []>("out_7_cast_fp16")];
|
|
|
|
|
|
|
|
|
|
| 178 |
tensor<fp16, [384]> obj_15_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_15_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(44910656)))];
|
| 179 |
tensor<fp16, [384]> obj_15_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_15_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(44911488)))];
|
| 180 |
tensor<fp16, []> obj_15_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_15_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
|
| 231 |
tensor<fp16, [384]> layers_1_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(46093888)))];
|
| 232 |
tensor<fp16, [1, 384, 1, 1]> obj_21_cast_fp16 = conv(bias = layers_1_self_attn_o_proj_bias_to_fp16, dilations = var_375, groups = var_285, pad = obj_21_pad_0, pad_type = obj_21_pad_type_0, strides = var_373, weight = layers_1_self_attn_o_proj_weight_to_fp16, x = input_11_cast_fp16)[name = tensor<string, []>("obj_21_cast_fp16")];
|
| 233 |
tensor<fp16, [1, 384, 1, 1]> inputs_9_cast_fp16 = add(x = inputs_7_cast_fp16, y = obj_21_cast_fp16)[name = tensor<string, []>("inputs_9_cast_fp16")];
|
| 234 |
+
tensor<int32, [1]> out_9_axes_0 = const()[name = tensor<string, []>("out_9_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
tensor<fp16, []> var_391_to_fp16 = const()[name = tensor<string, []>("op_391_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 236 |
+
tensor<fp16, [1, 384, 1, 1]> out_9_cast_fp16 = layer_norm(axes = out_9_axes_0, epsilon = var_391_to_fp16, x = inputs_9_cast_fp16)[name = tensor<string, []>("out_9_cast_fp16")];
|
|
|
|
|
|
|
|
|
|
| 237 |
tensor<fp16, [384]> obj_23_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_23_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(46094720)))];
|
| 238 |
tensor<fp16, [384]> obj_23_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_23_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(46095552)))];
|
| 239 |
tensor<fp16, []> obj_23_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_23_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
|
| 283 |
tensor<fp16, [384]> layers_1_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(47277952)))];
|
| 284 |
tensor<fp16, [1, 384, 1, 1]> obj_25_cast_fp16 = conv(bias = layers_1_encoder_attn_o_proj_bias_to_fp16, dilations = var_445, groups = var_285, pad = obj_25_pad_0, pad_type = obj_25_pad_type_0, strides = var_443, weight = layers_1_encoder_attn_o_proj_weight_to_fp16, x = input_13_cast_fp16)[name = tensor<string, []>("obj_25_cast_fp16")];
|
| 285 |
tensor<fp16, [1, 384, 1, 1]> inputs_11_cast_fp16 = add(x = inputs_9_cast_fp16, y = obj_25_cast_fp16)[name = tensor<string, []>("inputs_11_cast_fp16")];
|
| 286 |
+
tensor<int32, [1]> out_11_axes_0 = const()[name = tensor<string, []>("out_11_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
tensor<fp16, []> var_460_to_fp16 = const()[name = tensor<string, []>("op_460_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 288 |
+
tensor<fp16, [1, 384, 1, 1]> out_11_cast_fp16 = layer_norm(axes = out_11_axes_0, epsilon = var_460_to_fp16, x = inputs_11_cast_fp16)[name = tensor<string, []>("out_11_cast_fp16")];
|
|
|
|
|
|
|
|
|
|
| 289 |
tensor<fp16, [384]> input_15_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_15_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(47278784)))];
|
| 290 |
tensor<fp16, [384]> input_15_beta_0_to_fp16 = const()[name = tensor<string, []>("input_15_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(47279616)))];
|
| 291 |
tensor<fp16, []> input_15_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_15_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
|
| 309 |
tensor<fp16, [1, 384, 1, 1]> inputs_13_cast_fp16 = add(x = inputs_11_cast_fp16, y = hidden_states_5_cast_fp16)[name = tensor<string, []>("inputs_13_cast_fp16")];
|
| 310 |
tensor<int32, []> var_496 = const()[name = tensor<string, []>("op_496"), val = tensor<int32, []>(3)];
|
| 311 |
tensor<int32, []> var_503 = const()[name = tensor<string, []>("op_503"), val = tensor<int32, []>(1)];
|
| 312 |
+
tensor<int32, [1]> out_13_axes_0 = const()[name = tensor<string, []>("out_13_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
tensor<fp16, []> var_522_to_fp16 = const()[name = tensor<string, []>("op_522_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 314 |
+
tensor<fp16, [1, 384, 1, 1]> out_13_cast_fp16 = layer_norm(axes = out_13_axes_0, epsilon = var_522_to_fp16, x = inputs_13_cast_fp16)[name = tensor<string, []>("out_13_cast_fp16")];
|
|
|
|
|
|
|
|
|
|
| 315 |
tensor<fp16, [384]> obj_29_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_29_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(49643840)))];
|
| 316 |
tensor<fp16, [384]> obj_29_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_29_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(49644672)))];
|
| 317 |
tensor<fp16, []> obj_29_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_29_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
|
| 368 |
tensor<fp16, [384]> layers_2_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(50827072)))];
|
| 369 |
tensor<fp16, [1, 384, 1, 1]> obj_35_cast_fp16 = conv(bias = layers_2_self_attn_o_proj_bias_to_fp16, dilations = var_593, groups = var_503, pad = obj_35_pad_0, pad_type = obj_35_pad_type_0, strides = var_591, weight = layers_2_self_attn_o_proj_weight_to_fp16, x = input_21_cast_fp16)[name = tensor<string, []>("obj_35_cast_fp16")];
|
| 370 |
tensor<fp16, [1, 384, 1, 1]> inputs_15_cast_fp16 = add(x = inputs_13_cast_fp16, y = obj_35_cast_fp16)[name = tensor<string, []>("inputs_15_cast_fp16")];
|
| 371 |
+
tensor<int32, [1]> out_15_axes_0 = const()[name = tensor<string, []>("out_15_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
tensor<fp16, []> var_609_to_fp16 = const()[name = tensor<string, []>("op_609_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 373 |
+
tensor<fp16, [1, 384, 1, 1]> out_15_cast_fp16 = layer_norm(axes = out_15_axes_0, epsilon = var_609_to_fp16, x = inputs_15_cast_fp16)[name = tensor<string, []>("out_15_cast_fp16")];
|
|
|
|
|
|
|
|
|
|
| 374 |
tensor<fp16, [384]> obj_37_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_37_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(50827904)))];
|
| 375 |
tensor<fp16, [384]> obj_37_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_37_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(50828736)))];
|
| 376 |
tensor<fp16, []> obj_37_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_37_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
|
| 420 |
tensor<fp16, [384]> layers_2_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(52011136)))];
|
| 421 |
tensor<fp16, [1, 384, 1, 1]> obj_39_cast_fp16 = conv(bias = layers_2_encoder_attn_o_proj_bias_to_fp16, dilations = var_663, groups = var_503, pad = obj_39_pad_0, pad_type = obj_39_pad_type_0, strides = var_661, weight = layers_2_encoder_attn_o_proj_weight_to_fp16, x = input_23_cast_fp16)[name = tensor<string, []>("obj_39_cast_fp16")];
|
| 422 |
tensor<fp16, [1, 384, 1, 1]> inputs_17_cast_fp16 = add(x = inputs_15_cast_fp16, y = obj_39_cast_fp16)[name = tensor<string, []>("inputs_17_cast_fp16")];
|
| 423 |
+
tensor<int32, [1]> out_17_axes_0 = const()[name = tensor<string, []>("out_17_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 424 |
tensor<fp16, []> var_678_to_fp16 = const()[name = tensor<string, []>("op_678_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 425 |
+
tensor<fp16, [1, 384, 1, 1]> out_17_cast_fp16 = layer_norm(axes = out_17_axes_0, epsilon = var_678_to_fp16, x = inputs_17_cast_fp16)[name = tensor<string, []>("out_17_cast_fp16")];
|
|
|
|
|
|
|
|
|
|
| 426 |
tensor<fp16, [384]> input_25_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_25_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(52011968)))];
|
| 427 |
tensor<fp16, [384]> input_25_beta_0_to_fp16 = const()[name = tensor<string, []>("input_25_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(52012800)))];
|
| 428 |
tensor<fp16, []> input_25_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_25_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
|
| 446 |
tensor<fp16, [1, 384, 1, 1]> inputs_19_cast_fp16 = add(x = inputs_17_cast_fp16, y = hidden_states_7_cast_fp16)[name = tensor<string, []>("inputs_19_cast_fp16")];
|
| 447 |
tensor<int32, []> var_714 = const()[name = tensor<string, []>("op_714"), val = tensor<int32, []>(3)];
|
| 448 |
tensor<int32, []> var_721 = const()[name = tensor<string, []>("op_721"), val = tensor<int32, []>(1)];
|
| 449 |
+
tensor<int32, [1]> out_19_axes_0 = const()[name = tensor<string, []>("out_19_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 450 |
tensor<fp16, []> var_740_to_fp16 = const()[name = tensor<string, []>("op_740_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 451 |
+
tensor<fp16, [1, 384, 1, 1]> out_19_cast_fp16 = layer_norm(axes = out_19_axes_0, epsilon = var_740_to_fp16, x = inputs_19_cast_fp16)[name = tensor<string, []>("out_19_cast_fp16")];
|
|
|
|
|
|
|
|
|
|
| 452 |
tensor<fp16, [384]> obj_43_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_43_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(54377024)))];
|
| 453 |
tensor<fp16, [384]> obj_43_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_43_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(54377856)))];
|
| 454 |
tensor<fp16, []> obj_43_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_43_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
|
| 505 |
tensor<fp16, [384]> layers_3_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(55560256)))];
|
| 506 |
tensor<fp16, [1, 384, 1, 1]> obj_49_cast_fp16 = conv(bias = layers_3_self_attn_o_proj_bias_to_fp16, dilations = var_811, groups = var_721, pad = obj_49_pad_0, pad_type = obj_49_pad_type_0, strides = var_809, weight = layers_3_self_attn_o_proj_weight_to_fp16, x = input_31_cast_fp16)[name = tensor<string, []>("obj_49_cast_fp16")];
|
| 507 |
tensor<fp16, [1, 384, 1, 1]> inputs_21_cast_fp16 = add(x = inputs_19_cast_fp16, y = obj_49_cast_fp16)[name = tensor<string, []>("inputs_21_cast_fp16")];
|
| 508 |
+
tensor<int32, [1]> out_21_axes_0 = const()[name = tensor<string, []>("out_21_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 509 |
tensor<fp16, []> var_827_to_fp16 = const()[name = tensor<string, []>("op_827_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 510 |
+
tensor<fp16, [1, 384, 1, 1]> out_21_cast_fp16 = layer_norm(axes = out_21_axes_0, epsilon = var_827_to_fp16, x = inputs_21_cast_fp16)[name = tensor<string, []>("out_21_cast_fp16")];
|
|
|
|
|
|
|
|
|
|
| 511 |
tensor<fp16, [384]> obj_51_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_51_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(55561088)))];
|
| 512 |
tensor<fp16, [384]> obj_51_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_51_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(55561920)))];
|
| 513 |
tensor<fp16, []> obj_51_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_51_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
|
| 557 |
tensor<fp16, [384]> layers_3_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(56744320)))];
|
| 558 |
tensor<fp16, [1, 384, 1, 1]> obj_53_cast_fp16 = conv(bias = layers_3_encoder_attn_o_proj_bias_to_fp16, dilations = var_881, groups = var_721, pad = obj_53_pad_0, pad_type = obj_53_pad_type_0, strides = var_879, weight = layers_3_encoder_attn_o_proj_weight_to_fp16, x = input_33_cast_fp16)[name = tensor<string, []>("obj_53_cast_fp16")];
|
| 559 |
tensor<fp16, [1, 384, 1, 1]> inputs_23_cast_fp16 = add(x = inputs_21_cast_fp16, y = obj_53_cast_fp16)[name = tensor<string, []>("inputs_23_cast_fp16")];
|
| 560 |
+
tensor<int32, [1]> out_23_axes_0 = const()[name = tensor<string, []>("out_23_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 561 |
tensor<fp16, []> var_896_to_fp16 = const()[name = tensor<string, []>("op_896_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 562 |
+
tensor<fp16, [1, 384, 1, 1]> out_23_cast_fp16 = layer_norm(axes = out_23_axes_0, epsilon = var_896_to_fp16, x = inputs_23_cast_fp16)[name = tensor<string, []>("out_23_cast_fp16")];
|
|
|
|
|
|
|
|
|
|
| 563 |
tensor<fp16, [384]> input_35_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_35_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(56745152)))];
|
| 564 |
tensor<fp16, [384]> input_35_beta_0_to_fp16 = const()[name = tensor<string, []>("input_35_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(56745984)))];
|
| 565 |
tensor<fp16, []> input_35_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_35_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
|
| 581 |
tensor<fp16, [384]> layers_3_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_fc2_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(59109376)))];
|
| 582 |
tensor<fp16, [1, 384, 1, 1]> hidden_states_9_cast_fp16 = conv(bias = layers_3_fc2_bias_to_fp16, dilations = var_918, groups = var_721, pad = hidden_states_9_pad_0, pad_type = hidden_states_9_pad_type_0, strides = var_916, weight = layers_3_fc2_weight_to_fp16, x = input_cast_fp16)[name = tensor<string, []>("hidden_states_9_cast_fp16")];
|
| 583 |
tensor<fp16, [1, 384, 1, 1]> inputs_cast_fp16 = add(x = inputs_23_cast_fp16, y = hidden_states_9_cast_fp16)[name = tensor<string, []>("inputs_cast_fp16")];
|
| 584 |
+
tensor<int32, [1]> out_axes_0 = const()[name = tensor<string, []>("out_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 585 |
tensor<fp16, []> var_939_to_fp16 = const()[name = tensor<string, []>("op_939_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
| 586 |
+
tensor<fp16, [1, 384, 1, 1]> out_cast_fp16 = layer_norm(axes = out_axes_0, epsilon = var_939_to_fp16, x = inputs_cast_fp16)[name = tensor<string, []>("out_cast_fp16")];
|
|
|
|
|
|
|
|
|
|
| 587 |
tensor<fp16, [384]> hidden_states_gamma_0_to_fp16 = const()[name = tensor<string, []>("hidden_states_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(59110208)))];
|
| 588 |
tensor<fp16, [384]> hidden_states_beta_0_to_fp16 = const()[name = tensor<string, []>("hidden_states_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(59111040)))];
|
| 589 |
tensor<fp16, []> hidden_states_epsilon_0_to_fp16 = const()[name = tensor<string, []>("hidden_states_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
openai_whisper-tiny.en/TextDecoder.mlmodelc/weights/weight.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 59215664
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:12c57bf53565400bb60c09b13e9a6e31fdaa147585a8e21aeea1b60a96e3400e
|
| 3 |
size 59215664
|