whisperkittools-4925e685124152a1087d88d381b6e705e2c90cea generated files: openai_whisper-tiny.en
Browse files- openai_whisper-tiny.en/AudioEncoder.mlmodelc/weights/weight.bin +1 -1
- openai_whisper-tiny.en/MelSpectrogram.mlmodelc/weights/weight.bin +1 -1
- openai_whisper-tiny.en/TextDecoder.mlmodelc/analytics/coremldata.bin +1 -1
- openai_whisper-tiny.en/TextDecoder.mlmodelc/coremldata.bin +1 -1
- openai_whisper-tiny.en/TextDecoder.mlmodelc/metadata.json +8 -8
- openai_whisper-tiny.en/TextDecoder.mlmodelc/model.mil +52 -52
- openai_whisper-tiny.en/TextDecoder.mlmodelc/weights/weight.bin +1 -1
openai_whisper-tiny.en/AudioEncoder.mlmodelc/weights/weight.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 16422784
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1bcda05382b782419371417ec403cad5eb7d86352bc2c02465c087ed93dde24
|
3 |
size 16422784
|
openai_whisper-tiny.en/MelSpectrogram.mlmodelc/weights/weight.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 354080
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0bf21a34f58b276938eee139df876f35ce972c6f60a0d8c2a3644102e19dc9d
|
3 |
size 354080
|
openai_whisper-tiny.en/TextDecoder.mlmodelc/analytics/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 243
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d896bfb3402104303782763f619998dd35c72c3618e7c1ce51520c78d4599b4
|
3 |
size 243
|
openai_whisper-tiny.en/TextDecoder.mlmodelc/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 593
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba57b843270ebc0f8d8268179b7498a1d8e313a4ec970afa3dab94525f246e4d
|
3 |
size 593
|
openai_whisper-tiny.en/TextDecoder.mlmodelc/metadata.json
CHANGED
@@ -102,9 +102,9 @@
|
|
102 |
"hasShapeFlexibility" : "0",
|
103 |
"isOptional" : "0",
|
104 |
"dataType" : "Float16",
|
105 |
-
"formattedType" : "MultiArray (Float16 1 × 1536 × 1 ×
|
106 |
"shortDescription" : "",
|
107 |
-
"shape" : "[1, 1536, 1,
|
108 |
"name" : "key_cache",
|
109 |
"type" : "MultiArray"
|
110 |
},
|
@@ -112,9 +112,9 @@
|
|
112 |
"hasShapeFlexibility" : "0",
|
113 |
"isOptional" : "0",
|
114 |
"dataType" : "Float16",
|
115 |
-
"formattedType" : "MultiArray (Float16 1 × 1536 × 1 ×
|
116 |
"shortDescription" : "",
|
117 |
-
"shape" : "[1, 1536, 1,
|
118 |
"name" : "value_cache",
|
119 |
"type" : "MultiArray"
|
120 |
},
|
@@ -122,9 +122,9 @@
|
|
122 |
"hasShapeFlexibility" : "0",
|
123 |
"isOptional" : "0",
|
124 |
"dataType" : "Float16",
|
125 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
126 |
"shortDescription" : "",
|
127 |
-
"shape" : "[1,
|
128 |
"name" : "kv_cache_update_mask",
|
129 |
"type" : "MultiArray"
|
130 |
},
|
@@ -142,9 +142,9 @@
|
|
142 |
"hasShapeFlexibility" : "0",
|
143 |
"isOptional" : "0",
|
144 |
"dataType" : "Float16",
|
145 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
146 |
"shortDescription" : "",
|
147 |
-
"shape" : "[1,
|
148 |
"name" : "decoder_key_padding_mask",
|
149 |
"type" : "MultiArray"
|
150 |
}
|
|
|
102 |
"hasShapeFlexibility" : "0",
|
103 |
"isOptional" : "0",
|
104 |
"dataType" : "Float16",
|
105 |
+
"formattedType" : "MultiArray (Float16 1 × 1536 × 1 × 224)",
|
106 |
"shortDescription" : "",
|
107 |
+
"shape" : "[1, 1536, 1, 224]",
|
108 |
"name" : "key_cache",
|
109 |
"type" : "MultiArray"
|
110 |
},
|
|
|
112 |
"hasShapeFlexibility" : "0",
|
113 |
"isOptional" : "0",
|
114 |
"dataType" : "Float16",
|
115 |
+
"formattedType" : "MultiArray (Float16 1 × 1536 × 1 × 224)",
|
116 |
"shortDescription" : "",
|
117 |
+
"shape" : "[1, 1536, 1, 224]",
|
118 |
"name" : "value_cache",
|
119 |
"type" : "MultiArray"
|
120 |
},
|
|
|
122 |
"hasShapeFlexibility" : "0",
|
123 |
"isOptional" : "0",
|
124 |
"dataType" : "Float16",
|
125 |
+
"formattedType" : "MultiArray (Float16 1 × 224)",
|
126 |
"shortDescription" : "",
|
127 |
+
"shape" : "[1, 224]",
|
128 |
"name" : "kv_cache_update_mask",
|
129 |
"type" : "MultiArray"
|
130 |
},
|
|
|
142 |
"hasShapeFlexibility" : "0",
|
143 |
"isOptional" : "0",
|
144 |
"dataType" : "Float16",
|
145 |
+
"formattedType" : "MultiArray (Float16 1 × 224)",
|
146 |
"shortDescription" : "",
|
147 |
+
"shape" : "[1, 224]",
|
148 |
"name" : "decoder_key_padding_mask",
|
149 |
"type" : "MultiArray"
|
150 |
}
|
openai_whisper-tiny.en/TextDecoder.mlmodelc/model.mil
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
program(1.0)
|
2 |
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "5.33.5"}, {"coremlc-version", "1877.40.3"}, {"coremltools-component-torch", "2.1.2"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "7.1"}})]
|
3 |
{
|
4 |
-
func main<ios17>(tensor<int32, [1]> cache_length, tensor<fp16, [1,
|
5 |
tensor<int32, []> var_24_axis_0 = const()[name = tensor<string, []>("op_24_axis_0"), val = tensor<int32, []>(0)];
|
6 |
tensor<int32, []> var_24_batch_dims_0 = const()[name = tensor<string, []>("op_24_batch_dims_0"), val = tensor<int32, []>(0)];
|
7 |
tensor<bool, []> var_24_validate_indices_0 = const()[name = tensor<string, []>("op_24_validate_indices_0"), val = tensor<bool, []>(false)];
|
@@ -21,10 +21,10 @@ program(1.0)
|
|
21 |
tensor<fp16, [1, 384, 1, 1]> inputs_1_cast_fp16 = expand_dims(axes = inputs_1_axes_0, x = var_42_cast_fp16)[name = tensor<string, []>("inputs_1_cast_fp16")];
|
22 |
tensor<int32, [4]> tile_0 = const()[name = tensor<string, []>("tile_0"), val = tensor<int32, [4]>([384, 384, 384, 384])];
|
23 |
tensor<int32, []> var_47_axis_0 = const()[name = tensor<string, []>("op_47_axis_0"), val = tensor<int32, []>(1)];
|
24 |
-
tensor<fp16, [1, 384, 1,
|
25 |
tensor<int32, [4]> tile_1 = const()[name = tensor<string, []>("tile_1"), val = tensor<int32, [4]>([384, 384, 384, 384])];
|
26 |
tensor<int32, []> var_54_axis_0 = const()[name = tensor<string, []>("op_54_axis_0"), val = tensor<int32, []>(1)];
|
27 |
-
tensor<fp16, [1, 384, 1,
|
28 |
tensor<int32, []> var_64 = const()[name = tensor<string, []>("op_64"), val = tensor<int32, []>(3)];
|
29 |
tensor<int32, []> var_71 = const()[name = tensor<string, []>("op_71"), val = tensor<int32, []>(1)];
|
30 |
tensor<bool, []> var_72 = const()[name = tensor<string, []>("op_72"), val = tensor<bool, []>(true)];
|
@@ -66,34 +66,34 @@ program(1.0)
|
|
66 |
tensor<fp16, [384]> layers_0_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41064896)))];
|
67 |
tensor<fp16, [1, 384, 1, 1]> current_value_1_cast_fp16 = conv(bias = layers_0_self_attn_v_proj_bias_to_fp16, dilations = var_121, groups = var_71, pad = current_value_1_pad_0, pad_type = current_value_1_pad_type_0, strides = var_119, weight = layers_0_self_attn_v_proj_weight_to_fp16, x = obj_1_cast_fp16)[name = tensor<string, []>("current_value_1_cast_fp16")];
|
68 |
tensor<int32, [1]> var_125_axes_0 = const()[name = tensor<string, []>("op_125_axes_0"), val = tensor<int32, [1]>([1])];
|
69 |
-
tensor<fp16, [1, 1,
|
70 |
tensor<int32, [1]> var_126_axes_0 = const()[name = tensor<string, []>("op_126_axes_0"), val = tensor<int32, [1]>([2])];
|
71 |
-
tensor<fp16, [1, 1, 1,
|
72 |
-
tensor<fp16, [1, 384, 1,
|
73 |
tensor<fp16, []> var_65_to_fp16 = const()[name = tensor<string, []>("op_65_to_fp16"), val = tensor<fp16, []>(0x1p+0)];
|
74 |
-
tensor<fp16, [1, 1, 1,
|
75 |
-
tensor<fp16, [1, 384, 1,
|
76 |
-
tensor<fp16, [1, 384, 1,
|
77 |
-
tensor<fp16, [1, 384, 1,
|
78 |
-
tensor<fp16, [1, 384, 1,
|
79 |
-
tensor<fp16, [1, 384, 1,
|
80 |
tensor<int32, [4]> var_137 = const()[name = tensor<string, []>("op_137"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
81 |
tensor<fp16, [1, 6, 64, 1]> var_138_cast_fp16 = reshape(shape = var_137, x = query_1_cast_fp16)[name = tensor<string, []>("op_138_cast_fp16")];
|
82 |
tensor<fp16, []> var_139_to_fp16 = const()[name = tensor<string, []>("op_139_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
|
83 |
tensor<fp16, [1, 6, 64, 1]> var_140_cast_fp16 = mul(x = var_138_cast_fp16, y = var_139_to_fp16)[name = tensor<string, []>("op_140_cast_fp16")];
|
84 |
tensor<int32, [4]> var_141 = const()[name = tensor<string, []>("op_141"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
85 |
-
tensor<fp16, [1, 6, 64,
|
86 |
tensor<bool, []> mh_w_1_transpose_x_0 = const()[name = tensor<string, []>("mh_w_1_transpose_x_0"), val = tensor<bool, []>(true)];
|
87 |
tensor<bool, []> mh_w_1_transpose_y_0 = const()[name = tensor<string, []>("mh_w_1_transpose_y_0"), val = tensor<bool, []>(false)];
|
88 |
-
tensor<fp16, [1, 6, 1,
|
89 |
tensor<int32, [1]> var_146_axes_0 = const()[name = tensor<string, []>("op_146_axes_0"), val = tensor<int32, [1]>([1])];
|
90 |
-
tensor<fp16, [1, 1,
|
91 |
tensor<int32, [1]> var_147_axes_0 = const()[name = tensor<string, []>("op_147_axes_0"), val = tensor<int32, [1]>([2])];
|
92 |
-
tensor<fp16, [1, 1, 1,
|
93 |
-
tensor<fp16, [1, 6, 1,
|
94 |
-
tensor<fp16, [1, 6, 1,
|
95 |
tensor<int32, [4]> var_151 = const()[name = tensor<string, []>("op_151"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
96 |
-
tensor<fp16, [1, 6, 64,
|
97 |
tensor<bool, []> attn_1_transpose_x_0 = const()[name = tensor<string, []>("attn_1_transpose_x_0"), val = tensor<bool, []>(false)];
|
98 |
tensor<bool, []> attn_1_transpose_y_0 = const()[name = tensor<string, []>("attn_1_transpose_y_0"), val = tensor<bool, []>(true)];
|
99 |
tensor<fp16, [1, 6, 64, 1]> attn_1_cast_fp16 = matmul(transpose_x = attn_1_transpose_x_0, transpose_y = attn_1_transpose_y_0, x = var_152_cast_fp16, y = var_150_cast_fp16)[name = tensor<string, []>("attn_1_cast_fp16")];
|
@@ -237,25 +237,25 @@ program(1.0)
|
|
237 |
tensor<fp16, [384, 384, 1, 1]> layers_1_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(45503104)))];
|
238 |
tensor<fp16, [384]> layers_1_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(45798080)))];
|
239 |
tensor<fp16, [1, 384, 1, 1]> current_value_3_cast_fp16 = conv(bias = layers_1_self_attn_v_proj_bias_to_fp16, dilations = var_335, groups = var_285, pad = current_value_3_pad_0, pad_type = current_value_3_pad_type_0, strides = var_333, weight = layers_1_self_attn_v_proj_weight_to_fp16, x = obj_13_cast_fp16)[name = tensor<string, []>("current_value_3_cast_fp16")];
|
240 |
-
tensor<fp16, [1, 384, 1,
|
241 |
-
tensor<fp16, [1, 384, 1,
|
242 |
-
tensor<fp16, [1, 384, 1,
|
243 |
-
tensor<fp16, [1, 384, 1,
|
244 |
-
tensor<fp16, [1, 384, 1,
|
245 |
-
tensor<fp16, [1, 384, 1,
|
246 |
tensor<int32, [4]> var_351 = const()[name = tensor<string, []>("op_351"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
247 |
tensor<fp16, [1, 6, 64, 1]> var_352_cast_fp16 = reshape(shape = var_351, x = query_5_cast_fp16)[name = tensor<string, []>("op_352_cast_fp16")];
|
248 |
tensor<fp16, []> var_353_to_fp16 = const()[name = tensor<string, []>("op_353_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
|
249 |
tensor<fp16, [1, 6, 64, 1]> var_354_cast_fp16 = mul(x = var_352_cast_fp16, y = var_353_to_fp16)[name = tensor<string, []>("op_354_cast_fp16")];
|
250 |
tensor<int32, [4]> var_355 = const()[name = tensor<string, []>("op_355"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
251 |
-
tensor<fp16, [1, 6, 64,
|
252 |
tensor<bool, []> mh_w_7_transpose_x_0 = const()[name = tensor<string, []>("mh_w_7_transpose_x_0"), val = tensor<bool, []>(true)];
|
253 |
tensor<bool, []> mh_w_7_transpose_y_0 = const()[name = tensor<string, []>("mh_w_7_transpose_y_0"), val = tensor<bool, []>(false)];
|
254 |
-
tensor<fp16, [1, 6, 1,
|
255 |
-
tensor<fp16, [1, 6, 1,
|
256 |
-
tensor<fp16, [1, 6, 1,
|
257 |
tensor<int32, [4]> var_365 = const()[name = tensor<string, []>("op_365"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
258 |
-
tensor<fp16, [1, 6, 64,
|
259 |
tensor<bool, []> attn_5_transpose_x_0 = const()[name = tensor<string, []>("attn_5_transpose_x_0"), val = tensor<bool, []>(false)];
|
260 |
tensor<bool, []> attn_5_transpose_y_0 = const()[name = tensor<string, []>("attn_5_transpose_y_0"), val = tensor<bool, []>(true)];
|
261 |
tensor<fp16, [1, 6, 64, 1]> attn_5_cast_fp16 = matmul(transpose_x = attn_5_transpose_x_0, transpose_y = attn_5_transpose_y_0, x = var_366_cast_fp16, y = var_364_cast_fp16)[name = tensor<string, []>("attn_5_cast_fp16")];
|
@@ -399,25 +399,25 @@ program(1.0)
|
|
399 |
tensor<fp16, [384, 384, 1, 1]> layers_2_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(50236288)))];
|
400 |
tensor<fp16, [384]> layers_2_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(50531264)))];
|
401 |
tensor<fp16, [1, 384, 1, 1]> current_value_5_cast_fp16 = conv(bias = layers_2_self_attn_v_proj_bias_to_fp16, dilations = var_549, groups = var_499, pad = current_value_5_pad_0, pad_type = current_value_5_pad_type_0, strides = var_547, weight = layers_2_self_attn_v_proj_weight_to_fp16, x = obj_25_cast_fp16)[name = tensor<string, []>("current_value_5_cast_fp16")];
|
402 |
-
tensor<fp16, [1, 384, 1,
|
403 |
-
tensor<fp16, [1, 384, 1,
|
404 |
-
tensor<fp16, [1, 384, 1,
|
405 |
-
tensor<fp16, [1, 384, 1,
|
406 |
-
tensor<fp16, [1, 384, 1,
|
407 |
-
tensor<fp16, [1, 384, 1,
|
408 |
tensor<int32, [4]> var_565 = const()[name = tensor<string, []>("op_565"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
409 |
tensor<fp16, [1, 6, 64, 1]> var_566_cast_fp16 = reshape(shape = var_565, x = query_9_cast_fp16)[name = tensor<string, []>("op_566_cast_fp16")];
|
410 |
tensor<fp16, []> var_567_to_fp16 = const()[name = tensor<string, []>("op_567_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
|
411 |
tensor<fp16, [1, 6, 64, 1]> var_568_cast_fp16 = mul(x = var_566_cast_fp16, y = var_567_to_fp16)[name = tensor<string, []>("op_568_cast_fp16")];
|
412 |
tensor<int32, [4]> var_569 = const()[name = tensor<string, []>("op_569"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
413 |
-
tensor<fp16, [1, 6, 64,
|
414 |
tensor<bool, []> mh_w_13_transpose_x_0 = const()[name = tensor<string, []>("mh_w_13_transpose_x_0"), val = tensor<bool, []>(true)];
|
415 |
tensor<bool, []> mh_w_13_transpose_y_0 = const()[name = tensor<string, []>("mh_w_13_transpose_y_0"), val = tensor<bool, []>(false)];
|
416 |
-
tensor<fp16, [1, 6, 1,
|
417 |
-
tensor<fp16, [1, 6, 1,
|
418 |
-
tensor<fp16, [1, 6, 1,
|
419 |
tensor<int32, [4]> var_579 = const()[name = tensor<string, []>("op_579"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
420 |
-
tensor<fp16, [1, 6, 64,
|
421 |
tensor<bool, []> attn_9_transpose_x_0 = const()[name = tensor<string, []>("attn_9_transpose_x_0"), val = tensor<bool, []>(false)];
|
422 |
tensor<bool, []> attn_9_transpose_y_0 = const()[name = tensor<string, []>("attn_9_transpose_y_0"), val = tensor<bool, []>(true)];
|
423 |
tensor<fp16, [1, 6, 64, 1]> attn_9_cast_fp16 = matmul(transpose_x = attn_9_transpose_x_0, transpose_y = attn_9_transpose_y_0, x = var_580_cast_fp16, y = var_578_cast_fp16)[name = tensor<string, []>("attn_9_cast_fp16")];
|
@@ -561,25 +561,25 @@ program(1.0)
|
|
561 |
tensor<fp16, [384, 384, 1, 1]> layers_3_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(54969472)))];
|
562 |
tensor<fp16, [384]> layers_3_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(55264448)))];
|
563 |
tensor<fp16, [1, 384, 1, 1]> current_value_cast_fp16 = conv(bias = layers_3_self_attn_v_proj_bias_to_fp16, dilations = var_763, groups = var_713, pad = current_value_pad_0, pad_type = current_value_pad_type_0, strides = var_761, weight = layers_3_self_attn_v_proj_weight_to_fp16, x = obj_37_cast_fp16)[name = tensor<string, []>("current_value_cast_fp16")];
|
564 |
-
tensor<fp16, [1, 384, 1,
|
565 |
-
tensor<fp16, [1, 384, 1,
|
566 |
-
tensor<fp16, [1, 384, 1,
|
567 |
-
tensor<fp16, [1, 384, 1,
|
568 |
-
tensor<fp16, [1, 384, 1,
|
569 |
-
tensor<fp16, [1, 384, 1,
|
570 |
tensor<int32, [4]> var_779 = const()[name = tensor<string, []>("op_779"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
571 |
tensor<fp16, [1, 6, 64, 1]> var_780_cast_fp16 = reshape(shape = var_779, x = query_13_cast_fp16)[name = tensor<string, []>("op_780_cast_fp16")];
|
572 |
tensor<fp16, []> var_781_to_fp16 = const()[name = tensor<string, []>("op_781_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
|
573 |
tensor<fp16, [1, 6, 64, 1]> var_782_cast_fp16 = mul(x = var_780_cast_fp16, y = var_781_to_fp16)[name = tensor<string, []>("op_782_cast_fp16")];
|
574 |
tensor<int32, [4]> var_783 = const()[name = tensor<string, []>("op_783"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
575 |
-
tensor<fp16, [1, 6, 64,
|
576 |
tensor<bool, []> mh_w_19_transpose_x_0 = const()[name = tensor<string, []>("mh_w_19_transpose_x_0"), val = tensor<bool, []>(true)];
|
577 |
tensor<bool, []> mh_w_19_transpose_y_0 = const()[name = tensor<string, []>("mh_w_19_transpose_y_0"), val = tensor<bool, []>(false)];
|
578 |
-
tensor<fp16, [1, 6, 1,
|
579 |
-
tensor<fp16, [1, 6, 1,
|
580 |
-
tensor<fp16, [1, 6, 1,
|
581 |
tensor<int32, [4]> var_793 = const()[name = tensor<string, []>("op_793"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
582 |
-
tensor<fp16, [1, 6, 64,
|
583 |
tensor<bool, []> attn_13_transpose_x_0 = const()[name = tensor<string, []>("attn_13_transpose_x_0"), val = tensor<bool, []>(false)];
|
584 |
tensor<bool, []> attn_13_transpose_y_0 = const()[name = tensor<string, []>("attn_13_transpose_y_0"), val = tensor<bool, []>(true)];
|
585 |
tensor<fp16, [1, 6, 64, 1]> attn_13_cast_fp16 = matmul(transpose_x = attn_13_transpose_x_0, transpose_y = attn_13_transpose_y_0, x = var_794_cast_fp16, y = var_792_cast_fp16)[name = tensor<string, []>("attn_13_cast_fp16")];
|
|
|
1 |
program(1.0)
|
2 |
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "5.33.5"}, {"coremlc-version", "1877.40.3"}, {"coremltools-component-torch", "2.1.2"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "7.1"}})]
|
3 |
{
|
4 |
+
func main<ios17>(tensor<int32, [1]> cache_length, tensor<fp16, [1, 224]> decoder_key_padding_mask, tensor<fp16, [1, 384, 1, 1500]> encoder_output_embeds, tensor<int32, [1]> input_ids, tensor<fp16, [1, 1536, 1, 224]> key_cache, tensor<fp16, [1, 224]> kv_cache_update_mask, tensor<fp16, [1, 1536, 1, 224]> value_cache) {
|
5 |
tensor<int32, []> var_24_axis_0 = const()[name = tensor<string, []>("op_24_axis_0"), val = tensor<int32, []>(0)];
|
6 |
tensor<int32, []> var_24_batch_dims_0 = const()[name = tensor<string, []>("op_24_batch_dims_0"), val = tensor<int32, []>(0)];
|
7 |
tensor<bool, []> var_24_validate_indices_0 = const()[name = tensor<string, []>("op_24_validate_indices_0"), val = tensor<bool, []>(false)];
|
|
|
21 |
tensor<fp16, [1, 384, 1, 1]> inputs_1_cast_fp16 = expand_dims(axes = inputs_1_axes_0, x = var_42_cast_fp16)[name = tensor<string, []>("inputs_1_cast_fp16")];
|
22 |
tensor<int32, [4]> tile_0 = const()[name = tensor<string, []>("tile_0"), val = tensor<int32, [4]>([384, 384, 384, 384])];
|
23 |
tensor<int32, []> var_47_axis_0 = const()[name = tensor<string, []>("op_47_axis_0"), val = tensor<int32, []>(1)];
|
24 |
+
tensor<fp16, [1, 384, 1, 224]> var_47_cast_fp16_0, tensor<fp16, [1, 384, 1, 224]> var_47_cast_fp16_1, tensor<fp16, [1, 384, 1, 224]> var_47_cast_fp16_2, tensor<fp16, [1, 384, 1, 224]> var_47_cast_fp16_3 = split(axis = var_47_axis_0, split_sizes = tile_0, x = key_cache)[name = tensor<string, []>("op_47_cast_fp16")];
|
25 |
tensor<int32, [4]> tile_1 = const()[name = tensor<string, []>("tile_1"), val = tensor<int32, [4]>([384, 384, 384, 384])];
|
26 |
tensor<int32, []> var_54_axis_0 = const()[name = tensor<string, []>("op_54_axis_0"), val = tensor<int32, []>(1)];
|
27 |
+
tensor<fp16, [1, 384, 1, 224]> var_54_cast_fp16_0, tensor<fp16, [1, 384, 1, 224]> var_54_cast_fp16_1, tensor<fp16, [1, 384, 1, 224]> var_54_cast_fp16_2, tensor<fp16, [1, 384, 1, 224]> var_54_cast_fp16_3 = split(axis = var_54_axis_0, split_sizes = tile_1, x = value_cache)[name = tensor<string, []>("op_54_cast_fp16")];
|
28 |
tensor<int32, []> var_64 = const()[name = tensor<string, []>("op_64"), val = tensor<int32, []>(3)];
|
29 |
tensor<int32, []> var_71 = const()[name = tensor<string, []>("op_71"), val = tensor<int32, []>(1)];
|
30 |
tensor<bool, []> var_72 = const()[name = tensor<string, []>("op_72"), val = tensor<bool, []>(true)];
|
|
|
66 |
tensor<fp16, [384]> layers_0_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41064896)))];
|
67 |
tensor<fp16, [1, 384, 1, 1]> current_value_1_cast_fp16 = conv(bias = layers_0_self_attn_v_proj_bias_to_fp16, dilations = var_121, groups = var_71, pad = current_value_1_pad_0, pad_type = current_value_1_pad_type_0, strides = var_119, weight = layers_0_self_attn_v_proj_weight_to_fp16, x = obj_1_cast_fp16)[name = tensor<string, []>("current_value_1_cast_fp16")];
|
68 |
tensor<int32, [1]> var_125_axes_0 = const()[name = tensor<string, []>("op_125_axes_0"), val = tensor<int32, [1]>([1])];
|
69 |
+
tensor<fp16, [1, 1, 224]> var_125_cast_fp16 = expand_dims(axes = var_125_axes_0, x = kv_cache_update_mask)[name = tensor<string, []>("op_125_cast_fp16")];
|
70 |
tensor<int32, [1]> var_126_axes_0 = const()[name = tensor<string, []>("op_126_axes_0"), val = tensor<int32, [1]>([2])];
|
71 |
+
tensor<fp16, [1, 1, 1, 224]> var_126_cast_fp16 = expand_dims(axes = var_126_axes_0, x = var_125_cast_fp16)[name = tensor<string, []>("op_126_cast_fp16")];
|
72 |
+
tensor<fp16, [1, 384, 1, 224]> var_128_cast_fp16 = mul(x = current_key_1_cast_fp16, y = var_126_cast_fp16)[name = tensor<string, []>("op_128_cast_fp16")];
|
73 |
tensor<fp16, []> var_65_to_fp16 = const()[name = tensor<string, []>("op_65_to_fp16"), val = tensor<fp16, []>(0x1p+0)];
|
74 |
+
tensor<fp16, [1, 1, 1, 224]> var_129_cast_fp16 = sub(x = var_65_to_fp16, y = var_126_cast_fp16)[name = tensor<string, []>("op_129_cast_fp16")];
|
75 |
+
tensor<fp16, [1, 384, 1, 224]> var_130_cast_fp16 = mul(x = var_47_cast_fp16_0, y = var_129_cast_fp16)[name = tensor<string, []>("op_130_cast_fp16")];
|
76 |
+
tensor<fp16, [1, 384, 1, 224]> key_1_cast_fp16 = add(x = var_128_cast_fp16, y = var_130_cast_fp16)[name = tensor<string, []>("key_1_cast_fp16")];
|
77 |
+
tensor<fp16, [1, 384, 1, 224]> var_132_cast_fp16 = mul(x = current_value_1_cast_fp16, y = var_126_cast_fp16)[name = tensor<string, []>("op_132_cast_fp16")];
|
78 |
+
tensor<fp16, [1, 384, 1, 224]> var_134_cast_fp16 = mul(x = var_54_cast_fp16_0, y = var_129_cast_fp16)[name = tensor<string, []>("op_134_cast_fp16")];
|
79 |
+
tensor<fp16, [1, 384, 1, 224]> value_1_cast_fp16 = add(x = var_132_cast_fp16, y = var_134_cast_fp16)[name = tensor<string, []>("value_1_cast_fp16")];
|
80 |
tensor<int32, [4]> var_137 = const()[name = tensor<string, []>("op_137"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
81 |
tensor<fp16, [1, 6, 64, 1]> var_138_cast_fp16 = reshape(shape = var_137, x = query_1_cast_fp16)[name = tensor<string, []>("op_138_cast_fp16")];
|
82 |
tensor<fp16, []> var_139_to_fp16 = const()[name = tensor<string, []>("op_139_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
|
83 |
tensor<fp16, [1, 6, 64, 1]> var_140_cast_fp16 = mul(x = var_138_cast_fp16, y = var_139_to_fp16)[name = tensor<string, []>("op_140_cast_fp16")];
|
84 |
tensor<int32, [4]> var_141 = const()[name = tensor<string, []>("op_141"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
85 |
+
tensor<fp16, [1, 6, 64, 224]> var_142_cast_fp16 = reshape(shape = var_141, x = key_1_cast_fp16)[name = tensor<string, []>("op_142_cast_fp16")];
|
86 |
tensor<bool, []> mh_w_1_transpose_x_0 = const()[name = tensor<string, []>("mh_w_1_transpose_x_0"), val = tensor<bool, []>(true)];
|
87 |
tensor<bool, []> mh_w_1_transpose_y_0 = const()[name = tensor<string, []>("mh_w_1_transpose_y_0"), val = tensor<bool, []>(false)];
|
88 |
+
tensor<fp16, [1, 6, 1, 224]> mh_w_1_cast_fp16 = matmul(transpose_x = mh_w_1_transpose_x_0, transpose_y = mh_w_1_transpose_y_0, x = var_140_cast_fp16, y = var_142_cast_fp16)[name = tensor<string, []>("mh_w_1_cast_fp16")];
|
89 |
tensor<int32, [1]> var_146_axes_0 = const()[name = tensor<string, []>("op_146_axes_0"), val = tensor<int32, [1]>([1])];
|
90 |
+
tensor<fp16, [1, 1, 224]> var_146_cast_fp16 = expand_dims(axes = var_146_axes_0, x = decoder_key_padding_mask)[name = tensor<string, []>("op_146_cast_fp16")];
|
91 |
tensor<int32, [1]> var_147_axes_0 = const()[name = tensor<string, []>("op_147_axes_0"), val = tensor<int32, [1]>([2])];
|
92 |
+
tensor<fp16, [1, 1, 1, 224]> var_147_cast_fp16 = expand_dims(axes = var_147_axes_0, x = var_146_cast_fp16)[name = tensor<string, []>("op_147_cast_fp16")];
|
93 |
+
tensor<fp16, [1, 6, 1, 224]> mh_w_3_cast_fp16 = add(x = mh_w_1_cast_fp16, y = var_147_cast_fp16)[name = tensor<string, []>("mh_w_3_cast_fp16")];
|
94 |
+
tensor<fp16, [1, 6, 1, 224]> var_150_cast_fp16 = softmax(axis = var_64, x = mh_w_3_cast_fp16)[name = tensor<string, []>("op_150_cast_fp16")];
|
95 |
tensor<int32, [4]> var_151 = const()[name = tensor<string, []>("op_151"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
96 |
+
tensor<fp16, [1, 6, 64, 224]> var_152_cast_fp16 = reshape(shape = var_151, x = value_1_cast_fp16)[name = tensor<string, []>("op_152_cast_fp16")];
|
97 |
tensor<bool, []> attn_1_transpose_x_0 = const()[name = tensor<string, []>("attn_1_transpose_x_0"), val = tensor<bool, []>(false)];
|
98 |
tensor<bool, []> attn_1_transpose_y_0 = const()[name = tensor<string, []>("attn_1_transpose_y_0"), val = tensor<bool, []>(true)];
|
99 |
tensor<fp16, [1, 6, 64, 1]> attn_1_cast_fp16 = matmul(transpose_x = attn_1_transpose_x_0, transpose_y = attn_1_transpose_y_0, x = var_152_cast_fp16, y = var_150_cast_fp16)[name = tensor<string, []>("attn_1_cast_fp16")];
|
|
|
237 |
tensor<fp16, [384, 384, 1, 1]> layers_1_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(45503104)))];
|
238 |
tensor<fp16, [384]> layers_1_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(45798080)))];
|
239 |
tensor<fp16, [1, 384, 1, 1]> current_value_3_cast_fp16 = conv(bias = layers_1_self_attn_v_proj_bias_to_fp16, dilations = var_335, groups = var_285, pad = current_value_3_pad_0, pad_type = current_value_3_pad_type_0, strides = var_333, weight = layers_1_self_attn_v_proj_weight_to_fp16, x = obj_13_cast_fp16)[name = tensor<string, []>("current_value_3_cast_fp16")];
|
240 |
+
tensor<fp16, [1, 384, 1, 224]> var_342_cast_fp16 = mul(x = current_key_3_cast_fp16, y = var_126_cast_fp16)[name = tensor<string, []>("op_342_cast_fp16")];
|
241 |
+
tensor<fp16, [1, 384, 1, 224]> var_344_cast_fp16 = mul(x = var_47_cast_fp16_1, y = var_129_cast_fp16)[name = tensor<string, []>("op_344_cast_fp16")];
|
242 |
+
tensor<fp16, [1, 384, 1, 224]> key_5_cast_fp16 = add(x = var_342_cast_fp16, y = var_344_cast_fp16)[name = tensor<string, []>("key_5_cast_fp16")];
|
243 |
+
tensor<fp16, [1, 384, 1, 224]> var_346_cast_fp16 = mul(x = current_value_3_cast_fp16, y = var_126_cast_fp16)[name = tensor<string, []>("op_346_cast_fp16")];
|
244 |
+
tensor<fp16, [1, 384, 1, 224]> var_348_cast_fp16 = mul(x = var_54_cast_fp16_1, y = var_129_cast_fp16)[name = tensor<string, []>("op_348_cast_fp16")];
|
245 |
+
tensor<fp16, [1, 384, 1, 224]> value_5_cast_fp16 = add(x = var_346_cast_fp16, y = var_348_cast_fp16)[name = tensor<string, []>("value_5_cast_fp16")];
|
246 |
tensor<int32, [4]> var_351 = const()[name = tensor<string, []>("op_351"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
247 |
tensor<fp16, [1, 6, 64, 1]> var_352_cast_fp16 = reshape(shape = var_351, x = query_5_cast_fp16)[name = tensor<string, []>("op_352_cast_fp16")];
|
248 |
tensor<fp16, []> var_353_to_fp16 = const()[name = tensor<string, []>("op_353_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
|
249 |
tensor<fp16, [1, 6, 64, 1]> var_354_cast_fp16 = mul(x = var_352_cast_fp16, y = var_353_to_fp16)[name = tensor<string, []>("op_354_cast_fp16")];
|
250 |
tensor<int32, [4]> var_355 = const()[name = tensor<string, []>("op_355"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
251 |
+
tensor<fp16, [1, 6, 64, 224]> var_356_cast_fp16 = reshape(shape = var_355, x = key_5_cast_fp16)[name = tensor<string, []>("op_356_cast_fp16")];
|
252 |
tensor<bool, []> mh_w_7_transpose_x_0 = const()[name = tensor<string, []>("mh_w_7_transpose_x_0"), val = tensor<bool, []>(true)];
|
253 |
tensor<bool, []> mh_w_7_transpose_y_0 = const()[name = tensor<string, []>("mh_w_7_transpose_y_0"), val = tensor<bool, []>(false)];
|
254 |
+
tensor<fp16, [1, 6, 1, 224]> mh_w_7_cast_fp16 = matmul(transpose_x = mh_w_7_transpose_x_0, transpose_y = mh_w_7_transpose_y_0, x = var_354_cast_fp16, y = var_356_cast_fp16)[name = tensor<string, []>("mh_w_7_cast_fp16")];
|
255 |
+
tensor<fp16, [1, 6, 1, 224]> mh_w_9_cast_fp16 = add(x = mh_w_7_cast_fp16, y = var_147_cast_fp16)[name = tensor<string, []>("mh_w_9_cast_fp16")];
|
256 |
+
tensor<fp16, [1, 6, 1, 224]> var_364_cast_fp16 = softmax(axis = var_278, x = mh_w_9_cast_fp16)[name = tensor<string, []>("op_364_cast_fp16")];
|
257 |
tensor<int32, [4]> var_365 = const()[name = tensor<string, []>("op_365"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
258 |
+
tensor<fp16, [1, 6, 64, 224]> var_366_cast_fp16 = reshape(shape = var_365, x = value_5_cast_fp16)[name = tensor<string, []>("op_366_cast_fp16")];
|
259 |
tensor<bool, []> attn_5_transpose_x_0 = const()[name = tensor<string, []>("attn_5_transpose_x_0"), val = tensor<bool, []>(false)];
|
260 |
tensor<bool, []> attn_5_transpose_y_0 = const()[name = tensor<string, []>("attn_5_transpose_y_0"), val = tensor<bool, []>(true)];
|
261 |
tensor<fp16, [1, 6, 64, 1]> attn_5_cast_fp16 = matmul(transpose_x = attn_5_transpose_x_0, transpose_y = attn_5_transpose_y_0, x = var_366_cast_fp16, y = var_364_cast_fp16)[name = tensor<string, []>("attn_5_cast_fp16")];
|
|
|
399 |
tensor<fp16, [384, 384, 1, 1]> layers_2_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(50236288)))];
|
400 |
tensor<fp16, [384]> layers_2_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(50531264)))];
|
401 |
tensor<fp16, [1, 384, 1, 1]> current_value_5_cast_fp16 = conv(bias = layers_2_self_attn_v_proj_bias_to_fp16, dilations = var_549, groups = var_499, pad = current_value_5_pad_0, pad_type = current_value_5_pad_type_0, strides = var_547, weight = layers_2_self_attn_v_proj_weight_to_fp16, x = obj_25_cast_fp16)[name = tensor<string, []>("current_value_5_cast_fp16")];
|
402 |
+
tensor<fp16, [1, 384, 1, 224]> var_556_cast_fp16 = mul(x = current_key_5_cast_fp16, y = var_126_cast_fp16)[name = tensor<string, []>("op_556_cast_fp16")];
|
403 |
+
tensor<fp16, [1, 384, 1, 224]> var_558_cast_fp16 = mul(x = var_47_cast_fp16_2, y = var_129_cast_fp16)[name = tensor<string, []>("op_558_cast_fp16")];
|
404 |
+
tensor<fp16, [1, 384, 1, 224]> key_9_cast_fp16 = add(x = var_556_cast_fp16, y = var_558_cast_fp16)[name = tensor<string, []>("key_9_cast_fp16")];
|
405 |
+
tensor<fp16, [1, 384, 1, 224]> var_560_cast_fp16 = mul(x = current_value_5_cast_fp16, y = var_126_cast_fp16)[name = tensor<string, []>("op_560_cast_fp16")];
|
406 |
+
tensor<fp16, [1, 384, 1, 224]> var_562_cast_fp16 = mul(x = var_54_cast_fp16_2, y = var_129_cast_fp16)[name = tensor<string, []>("op_562_cast_fp16")];
|
407 |
+
tensor<fp16, [1, 384, 1, 224]> value_9_cast_fp16 = add(x = var_560_cast_fp16, y = var_562_cast_fp16)[name = tensor<string, []>("value_9_cast_fp16")];
|
408 |
tensor<int32, [4]> var_565 = const()[name = tensor<string, []>("op_565"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
409 |
tensor<fp16, [1, 6, 64, 1]> var_566_cast_fp16 = reshape(shape = var_565, x = query_9_cast_fp16)[name = tensor<string, []>("op_566_cast_fp16")];
|
410 |
tensor<fp16, []> var_567_to_fp16 = const()[name = tensor<string, []>("op_567_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
|
411 |
tensor<fp16, [1, 6, 64, 1]> var_568_cast_fp16 = mul(x = var_566_cast_fp16, y = var_567_to_fp16)[name = tensor<string, []>("op_568_cast_fp16")];
|
412 |
tensor<int32, [4]> var_569 = const()[name = tensor<string, []>("op_569"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
413 |
+
tensor<fp16, [1, 6, 64, 224]> var_570_cast_fp16 = reshape(shape = var_569, x = key_9_cast_fp16)[name = tensor<string, []>("op_570_cast_fp16")];
|
414 |
tensor<bool, []> mh_w_13_transpose_x_0 = const()[name = tensor<string, []>("mh_w_13_transpose_x_0"), val = tensor<bool, []>(true)];
|
415 |
tensor<bool, []> mh_w_13_transpose_y_0 = const()[name = tensor<string, []>("mh_w_13_transpose_y_0"), val = tensor<bool, []>(false)];
|
416 |
+
tensor<fp16, [1, 6, 1, 224]> mh_w_13_cast_fp16 = matmul(transpose_x = mh_w_13_transpose_x_0, transpose_y = mh_w_13_transpose_y_0, x = var_568_cast_fp16, y = var_570_cast_fp16)[name = tensor<string, []>("mh_w_13_cast_fp16")];
|
417 |
+
tensor<fp16, [1, 6, 1, 224]> mh_w_15_cast_fp16 = add(x = mh_w_13_cast_fp16, y = var_147_cast_fp16)[name = tensor<string, []>("mh_w_15_cast_fp16")];
|
418 |
+
tensor<fp16, [1, 6, 1, 224]> var_578_cast_fp16 = softmax(axis = var_492, x = mh_w_15_cast_fp16)[name = tensor<string, []>("op_578_cast_fp16")];
|
419 |
tensor<int32, [4]> var_579 = const()[name = tensor<string, []>("op_579"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
420 |
+
tensor<fp16, [1, 6, 64, 224]> var_580_cast_fp16 = reshape(shape = var_579, x = value_9_cast_fp16)[name = tensor<string, []>("op_580_cast_fp16")];
|
421 |
tensor<bool, []> attn_9_transpose_x_0 = const()[name = tensor<string, []>("attn_9_transpose_x_0"), val = tensor<bool, []>(false)];
|
422 |
tensor<bool, []> attn_9_transpose_y_0 = const()[name = tensor<string, []>("attn_9_transpose_y_0"), val = tensor<bool, []>(true)];
|
423 |
tensor<fp16, [1, 6, 64, 1]> attn_9_cast_fp16 = matmul(transpose_x = attn_9_transpose_x_0, transpose_y = attn_9_transpose_y_0, x = var_580_cast_fp16, y = var_578_cast_fp16)[name = tensor<string, []>("attn_9_cast_fp16")];
|
|
|
561 |
tensor<fp16, [384, 384, 1, 1]> layers_3_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(54969472)))];
|
562 |
tensor<fp16, [384]> layers_3_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(55264448)))];
|
563 |
tensor<fp16, [1, 384, 1, 1]> current_value_cast_fp16 = conv(bias = layers_3_self_attn_v_proj_bias_to_fp16, dilations = var_763, groups = var_713, pad = current_value_pad_0, pad_type = current_value_pad_type_0, strides = var_761, weight = layers_3_self_attn_v_proj_weight_to_fp16, x = obj_37_cast_fp16)[name = tensor<string, []>("current_value_cast_fp16")];
|
564 |
+
tensor<fp16, [1, 384, 1, 224]> var_770_cast_fp16 = mul(x = current_key_cast_fp16, y = var_126_cast_fp16)[name = tensor<string, []>("op_770_cast_fp16")];
|
565 |
+
tensor<fp16, [1, 384, 1, 224]> var_772_cast_fp16 = mul(x = var_47_cast_fp16_3, y = var_129_cast_fp16)[name = tensor<string, []>("op_772_cast_fp16")];
|
566 |
+
tensor<fp16, [1, 384, 1, 224]> key_13_cast_fp16 = add(x = var_770_cast_fp16, y = var_772_cast_fp16)[name = tensor<string, []>("key_13_cast_fp16")];
|
567 |
+
tensor<fp16, [1, 384, 1, 224]> var_774_cast_fp16 = mul(x = current_value_cast_fp16, y = var_126_cast_fp16)[name = tensor<string, []>("op_774_cast_fp16")];
|
568 |
+
tensor<fp16, [1, 384, 1, 224]> var_776_cast_fp16 = mul(x = var_54_cast_fp16_3, y = var_129_cast_fp16)[name = tensor<string, []>("op_776_cast_fp16")];
|
569 |
+
tensor<fp16, [1, 384, 1, 224]> value_13_cast_fp16 = add(x = var_774_cast_fp16, y = var_776_cast_fp16)[name = tensor<string, []>("value_13_cast_fp16")];
|
570 |
tensor<int32, [4]> var_779 = const()[name = tensor<string, []>("op_779"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
571 |
tensor<fp16, [1, 6, 64, 1]> var_780_cast_fp16 = reshape(shape = var_779, x = query_13_cast_fp16)[name = tensor<string, []>("op_780_cast_fp16")];
|
572 |
tensor<fp16, []> var_781_to_fp16 = const()[name = tensor<string, []>("op_781_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
|
573 |
tensor<fp16, [1, 6, 64, 1]> var_782_cast_fp16 = mul(x = var_780_cast_fp16, y = var_781_to_fp16)[name = tensor<string, []>("op_782_cast_fp16")];
|
574 |
tensor<int32, [4]> var_783 = const()[name = tensor<string, []>("op_783"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
575 |
+
tensor<fp16, [1, 6, 64, 224]> var_784_cast_fp16 = reshape(shape = var_783, x = key_13_cast_fp16)[name = tensor<string, []>("op_784_cast_fp16")];
|
576 |
tensor<bool, []> mh_w_19_transpose_x_0 = const()[name = tensor<string, []>("mh_w_19_transpose_x_0"), val = tensor<bool, []>(true)];
|
577 |
tensor<bool, []> mh_w_19_transpose_y_0 = const()[name = tensor<string, []>("mh_w_19_transpose_y_0"), val = tensor<bool, []>(false)];
|
578 |
+
tensor<fp16, [1, 6, 1, 224]> mh_w_19_cast_fp16 = matmul(transpose_x = mh_w_19_transpose_x_0, transpose_y = mh_w_19_transpose_y_0, x = var_782_cast_fp16, y = var_784_cast_fp16)[name = tensor<string, []>("mh_w_19_cast_fp16")];
|
579 |
+
tensor<fp16, [1, 6, 1, 224]> mh_w_21_cast_fp16 = add(x = mh_w_19_cast_fp16, y = var_147_cast_fp16)[name = tensor<string, []>("mh_w_21_cast_fp16")];
|
580 |
+
tensor<fp16, [1, 6, 1, 224]> var_792_cast_fp16 = softmax(axis = var_706, x = mh_w_21_cast_fp16)[name = tensor<string, []>("op_792_cast_fp16")];
|
581 |
tensor<int32, [4]> var_793 = const()[name = tensor<string, []>("op_793"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
582 |
+
tensor<fp16, [1, 6, 64, 224]> var_794_cast_fp16 = reshape(shape = var_793, x = value_13_cast_fp16)[name = tensor<string, []>("op_794_cast_fp16")];
|
583 |
tensor<bool, []> attn_13_transpose_x_0 = const()[name = tensor<string, []>("attn_13_transpose_x_0"), val = tensor<bool, []>(false)];
|
584 |
tensor<bool, []> attn_13_transpose_y_0 = const()[name = tensor<string, []>("attn_13_transpose_y_0"), val = tensor<bool, []>(true)];
|
585 |
tensor<fp16, [1, 6, 64, 1]> attn_13_cast_fp16 = matmul(transpose_x = attn_13_transpose_x_0, transpose_y = attn_13_transpose_y_0, x = var_794_cast_fp16, y = var_792_cast_fp16)[name = tensor<string, []>("attn_13_cast_fp16")];
|
openai_whisper-tiny.en/TextDecoder.mlmodelc/weights/weight.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 59215664
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92bfb389e3107e1dd84afa81bb1ecb416332b042736b313d673bf5c008e8b36d
|
3 |
size 59215664
|