File size: 5,365 Bytes
2d9fc67
 
 
 
 
 
 
 
 
b56fe65
2d9fc67
 
 
b56fe65
 
 
2d9fc67
 
 
 
 
 
 
b56fe65
 
 
2d9fc67
0ab75dd
2d9fc67
 
 
0ab75dd
 
2d9fc67
 
 
0ab75dd
 
 
2d9fc67
 
 
 
 
 
0ab75dd
 
 
2d9fc67
0ab75dd
2d9fc67
0ab75dd
 
2d9fc67
0ab75dd
 
 
2d9fc67
0ab75dd
 
 
 
 
2d9fc67
0ab75dd
 
2d9fc67
0ab75dd
 
 
2d9fc67
0ab75dd
 
2d9fc67
0ab75dd
2d9fc67
0ab75dd
2d9fc67
0ab75dd
2d9fc67
 
 
 
 
 
 
0ab75dd
2d9fc67
0ab75dd
 
 
 
 
 
 
 
 
2d9fc67
 
 
0ab75dd
 
 
 
 
 
 
 
 
 
2d9fc67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
---
datasets:
- artemkramov/coreference-dataset-ua
language:
- uk
tags:
- coreference-resolution
- anaphora
---
# Coreference resolution model for the Ukrainian language

<!-- Provide a quick summary of what the model is/does. -->

The coreference resolution model for the Ukrainian language was trained on the [silver Ukrainian coreference dataset](https://huggingface.co/datasets/artemkramov/coreference-dataset-ua)
using the [F-Coref](https://arxiv.org/abs/2209.04280) library. The model was trained on top of the [XML-Roberta-base model](https://huggingface.co/ukr-models/xlm-roberta-base-uk).


## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

- **Developed by:** [Artem Kramov](https://www.linkedin.com/in/artem-kramov-0b3731100/), Andrii Kursin ([email protected]).
- **Languages:** Ukrainian
- **Finetuned from model:** [XML-Roberta-base](https://huggingface.co/ukr-models/xlm-roberta-base-uk) 

### Model Sources

<!-- Provide the basic links for the model. -->

- **Repository:** https://github.com/artemkramov/fastcoref-ua/blob/main/README.md
- **Demo:** [Google Colab](https://colab.research.google.com/drive/1vsaH15DFDrmKB4aNsQ-9TCQGTW73uk1y?usp=sharing)

### Out-of-Scope Use

According to the metrics retrieved from the evaluation dataset, the model is more precision-oriented. Also, there is a high level of granularity of mentions. 
E.g., the mention "Головний виконавчий директор Андрій Сидоренко" can be divided into the following coreferent groups: ["Головний виконавчий директор Андрій Сидоренко", "Головний виконавчий директор", "Андрій Сидоренко"].
Such a feature can also be used to extract some positions, roles, or other features of entities in the text.


## How to Get Started with the Model

Use the code below to get started with the model.

```python
from fastcoref import FCoref
import spacy

nlp = spacy.load('uk_core_news_md')

model_path = "artemkramov/coref-ua"
model = FCoref(model_name_or_path=model_path, device='cuda:0', nlp=nlp)

preds = model.predict(
   texts=["""Мій друг дав мені свою машину та ключі до неї; крім того, він дав мені його книгу. Я з радістю її читаю."""]
)

preds[0].get_clusters(as_strings=False)
> [[(0, 3), (13, 17), (66, 70), (83, 84)],
 [(0, 8), (18, 22), (58, 61), (71, 75)],
 [(18, 29), (42, 45)],
 [(71, 81), (95, 97)]]

preds[0].get_clusters()
> [['Мій', 'мені', 'мені', 'Я'], ['Мій друг', 'свою', 'він', 'його'], ['свою машину', 'неї'], ['його книгу', 'її']]

preds[0].get_logit(
   span_i=(13, 17), span_j=(42, 45)
)

> -6.867196
```

## Training Details

### Training Data

The model was trained on the silver coreference resolution dataset: https://huggingface.co/datasets/artemkramov/coreference-dataset-ua.

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

#### Metrics

Two types of metrics were considered: mention-based and the coreference resolution metrics themselves.

Mention-based metrics:
- mention precision
- mention recall
- mention F1

Coreference resolution metrics were calculated as the average values across the following metrics: MUC, BCubed, CEAFE:
- coreference precision
- coreference recall
- coreference F1

### Results

The metrics for the validation dataset:

|         Metric        | Value |
|:---------------------:|-------|
| Mention precision     | 0.850 |
| Mention recall        | 0.798 |
| Mention F1            | 0.824 |
| Coreference precision | 0.758 |
| Coreference recall    | 0.706 |
| Coreference F1        | 0.731 |

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

[More Information Needed]

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed]