File size: 5,365 Bytes
2d9fc67 b56fe65 2d9fc67 b56fe65 2d9fc67 b56fe65 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
---
datasets:
- artemkramov/coreference-dataset-ua
language:
- uk
tags:
- coreference-resolution
- anaphora
---
# Coreference resolution model for the Ukrainian language
<!-- Provide a quick summary of what the model is/does. -->
The coreference resolution model for the Ukrainian language was trained on the [silver Ukrainian coreference dataset](https://huggingface.co/datasets/artemkramov/coreference-dataset-ua)
using the [F-Coref](https://arxiv.org/abs/2209.04280) library. The model was trained on top of the [XML-Roberta-base model](https://huggingface.co/ukr-models/xlm-roberta-base-uk).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [Artem Kramov](https://www.linkedin.com/in/artem-kramov-0b3731100/), Andrii Kursin ([email protected]).
- **Languages:** Ukrainian
- **Finetuned from model:** [XML-Roberta-base](https://huggingface.co/ukr-models/xlm-roberta-base-uk)
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/artemkramov/fastcoref-ua/blob/main/README.md
- **Demo:** [Google Colab](https://colab.research.google.com/drive/1vsaH15DFDrmKB4aNsQ-9TCQGTW73uk1y?usp=sharing)
### Out-of-Scope Use
According to the metrics retrieved from the evaluation dataset, the model is more precision-oriented. Also, there is a high level of granularity of mentions.
E.g., the mention "Головний виконавчий директор Андрій Сидоренко" can be divided into the following coreferent groups: ["Головний виконавчий директор Андрій Сидоренко", "Головний виконавчий директор", "Андрій Сидоренко"].
Such a feature can also be used to extract some positions, roles, or other features of entities in the text.
## How to Get Started with the Model
Use the code below to get started with the model.
```python
from fastcoref import FCoref
import spacy
nlp = spacy.load('uk_core_news_md')
model_path = "artemkramov/coref-ua"
model = FCoref(model_name_or_path=model_path, device='cuda:0', nlp=nlp)
preds = model.predict(
texts=["""Мій друг дав мені свою машину та ключі до неї; крім того, він дав мені його книгу. Я з радістю її читаю."""]
)
preds[0].get_clusters(as_strings=False)
> [[(0, 3), (13, 17), (66, 70), (83, 84)],
[(0, 8), (18, 22), (58, 61), (71, 75)],
[(18, 29), (42, 45)],
[(71, 81), (95, 97)]]
preds[0].get_clusters()
> [['Мій', 'мені', 'мені', 'Я'], ['Мій друг', 'свою', 'він', 'його'], ['свою машину', 'неї'], ['його книгу', 'її']]
preds[0].get_logit(
span_i=(13, 17), span_j=(42, 45)
)
> -6.867196
```
## Training Details
### Training Data
The model was trained on the silver coreference resolution dataset: https://huggingface.co/datasets/artemkramov/coreference-dataset-ua.
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
#### Metrics
Two types of metrics were considered: mention-based and the coreference resolution metrics themselves.
Mention-based metrics:
- mention precision
- mention recall
- mention F1
Coreference resolution metrics were calculated as the average values across the following metrics: MUC, BCubed, CEAFE:
- coreference precision
- coreference recall
- coreference F1
### Results
The metrics for the validation dataset:
| Metric | Value |
|:---------------------:|-------|
| Mention precision | 0.850 |
| Mention recall | 0.798 |
| Mention F1 | 0.824 |
| Coreference precision | 0.758 |
| Coreference recall | 0.706 |
| Coreference F1 | 0.731 |
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|