File size: 4,689 Bytes
2d9fc67 98c5344 d590b21 343aa34 2d9fc67 b56fe65 2d9fc67 b56fe65 2d9fc67 b56fe65 2d9fc67 0ab75dd 2d9fc67 0ab75dd 14891d6 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 0ab75dd 2d9fc67 0ab75dd 0a1aed1 0ab75dd 2d9fc67 c8aea95 2d9fc67 c8aea95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
---
datasets:
- artemkramov/coreference-dataset-ua
language:
- uk
tags:
- coreference-resolution
- anaphora
widget:
- text: "Jens Peter Hansen kommer fra Danmark"
example_title: "Coreference resolution"
model-index:
- name: test
results:
- task:
type: coreference-resolution # Required. Example: automatic-speech-recognition
name: Coreference resolution # Optional. Example: Speech Recognition
dataset:
type: artemkramov/coreference-dataset-ua # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
name: Silver Ukrainian Coreference Resolution Dataset # Required. A pretty name for the dataset. Example: Common Voice (French)
metrics:
- type: coval
value: 0.731
name: Mean F1 measure of MUC, BCubed, and CEAFE
---
# Coreference resolution model for the Ukrainian language
<!-- Provide a quick summary of what the model is/does. -->
The coreference resolution model for the Ukrainian language was trained on the [silver Ukrainian coreference dataset](https://huggingface.co/datasets/artemkramov/coreference-dataset-ua)
using the [F-Coref](https://arxiv.org/abs/2209.04280) library. The model was trained on top of the [XML-Roberta-base model](https://huggingface.co/ukr-models/xlm-roberta-base-uk).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [Artem Kramov](https://www.linkedin.com/in/artem-kramov-0b3731100/), Andrii Kursin ([email protected]).
- **Languages:** Ukrainian
- **Finetuned from model:** [XML-Roberta-base](https://huggingface.co/ukr-models/xlm-roberta-base-uk)
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/artemkramov/fastcoref-ua/blob/main/README.md
- **Demo:** [Google Colab](https://colab.research.google.com/drive/1vsaH15DFDrmKB4aNsQ-9TCQGTW73uk1y?usp=sharing), [Streamlit](https://coreference-ua-app.streamlit.app)
### Out-of-Scope Use
According to the metrics retrieved from the evaluation dataset, the model is more precision-oriented. Also, there is a high level of granularity of mentions.
E.g., the mention "Головний виконавчий директор Андрій Сидоренко" can be divided into the following coreferent groups: ["Головний виконавчий директор Андрій Сидоренко", "Головний виконавчий директор", "Андрій Сидоренко"].
Such a feature can also be used to extract some positions, roles, or other features of entities in the text.
## How to Get Started with the Model
Use the code below to get started with the model.
```python
from fastcoref import FCoref
import spacy
nlp = spacy.load('uk_core_news_md')
model_path = "artemkramov/coref-ua"
model = FCoref(model_name_or_path=model_path, device='cuda:0', nlp=nlp)
preds = model.predict(
texts=["""Мій друг дав мені свою машину та ключі до неї; крім того, він дав мені його книгу. Я з радістю її читаю."""]
)
preds[0].get_clusters(as_strings=False)
> [[(0, 3), (13, 17), (66, 70), (83, 84)],
[(0, 8), (18, 22), (58, 61), (71, 75)],
[(18, 29), (42, 45)],
[(71, 81), (95, 97)]]
preds[0].get_clusters()
> [['Мій', 'мені', 'мені', 'Я'], ['Мій друг', 'свою', 'він', 'його'], ['свою машину', 'неї'], ['його книгу', 'її']]
preds[0].get_logit(
span_i=(13, 17), span_j=(42, 45)
)
> -6.867196
```
## Training Details
### Training Data
The model was trained on the silver coreference resolution dataset: https://huggingface.co/datasets/artemkramov/coreference-dataset-ua.
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
#### Metrics
Two types of metrics were considered: mention-based and the coreference resolution metrics themselves.
Mention-based metrics:
- mention precision
- mention recall
- mention F1
Coreference resolution metrics were calculated as the average values across the following metrics: MUC, BCubed, CEAFE:
- coreference precision
- coreference recall
- coreference F1
### Results
The metrics for the validation dataset:
| Metric | Value |
|:---------------------|:-------|
| Mention precision | 0.850 |
| Mention recall | 0.798 |
| Mention F1 | 0.824 |
| Coreference precision | 0.758 |
| Coreference recall | 0.706 |
| Coreference F1 | 0.731 |
## Model Card Authors
Artem Kramov (https://www.linkedin.com/in/artem-kramov-0b3731100/), Andrii Kursin ([email protected]) |