File size: 6,697 Bytes
bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd bb9059d cc156cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
"""
Residual Convolutional Autoencoder Model
Usage:
from model import ResidualConvAutoencoder, load_model
import torch
# Option 1: Create and load manually
model = ResidualConvAutoencoder(latent_dim=512)
checkpoint = torch.load('model_universal_best.ckpt')
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
# Option 2: Use helper function
model, checkpoint = load_model('model_universal_best.ckpt', device='cuda')
"""
import torch
import torch.nn as nn
class ResidualBlock(nn.Module):
"""Residual block with two convolutional layers and optional dropout"""
def __init__(self, channels, dropout=0.1):
super().__init__()
self.conv1 = nn.Conv2d(channels, channels, 3, padding=1)
self.bn1 = nn.BatchNorm2d(channels)
self.conv2 = nn.Conv2d(channels, channels, 3, padding=1)
self.bn2 = nn.BatchNorm2d(channels)
self.relu = nn.ReLU(inplace=True)
self.dropout = nn.Dropout2d(dropout) if dropout > 0 else nn.Identity()
def forward(self, x):
residual = x
out = self.relu(self.bn1(self.conv1(x)))
out = self.dropout(out)
out = self.bn2(self.conv2(out))
out += residual
return self.relu(out)
class ResidualConvAutoencoder(nn.Module):
"""
Residual Convolutional Autoencoder for image reconstruction
Args:
latent_dim (int): Dimension of the latent space. Default: 512
dropout (float): Dropout rate for regularization. Default: 0.1
Input:
x: Tensor of shape (batch_size, 3, 128, 128)
Values should be normalized to [-1, 1]
Output:
reconstructed: Tensor of shape (batch_size, 3, 128, 128)
latent: Tensor of shape (batch_size, latent_dim)
"""
def __init__(self, latent_dim=512, dropout=0.1):
super().__init__()
# Encoder: 128x128 -> 4x4
self.encoder = nn.Sequential(
nn.Conv2d(3, 64, 4, stride=2, padding=1), # 128 -> 64
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
ResidualBlock(64, dropout),
nn.Conv2d(64, 128, 4, stride=2, padding=1), # 64 -> 32
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
ResidualBlock(128, dropout),
nn.Conv2d(128, 256, 4, stride=2, padding=1), # 32 -> 16
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
ResidualBlock(256, dropout),
nn.Conv2d(256, 512, 4, stride=2, padding=1), # 16 -> 8
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
ResidualBlock(512, dropout),
nn.Conv2d(512, 512, 4, stride=2, padding=1), # 8 -> 4
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
)
# Bottleneck
self.fc_encoder = nn.Linear(512 * 4 * 4, latent_dim)
self.fc_decoder = nn.Linear(latent_dim, 512 * 4 * 4)
# Decoder: 4x4 -> 128x128
self.decoder = nn.Sequential(
nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1), # 4 -> 8
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
ResidualBlock(512, dropout),
nn.ConvTranspose2d(512, 256, 4, stride=2, padding=1), # 8 -> 16
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
ResidualBlock(256, dropout),
nn.ConvTranspose2d(256, 128, 4, stride=2, padding=1), # 16 -> 32
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
ResidualBlock(128, dropout),
nn.ConvTranspose2d(128, 64, 4, stride=2, padding=1), # 32 -> 64
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
ResidualBlock(64, dropout),
nn.ConvTranspose2d(64, 3, 4, stride=2, padding=1), # 64 -> 128
nn.Tanh()
)
def forward(self, x):
"""
Forward pass through the autoencoder
Args:
x: Input tensor of shape (batch_size, 3, 128, 128)
Returns:
reconstructed: Reconstructed tensor of shape (batch_size, 3, 128, 128)
latent: Latent representation of shape (batch_size, latent_dim)
"""
# Encode
x = self.encoder(x)
x = x.view(x.size(0), -1)
latent = self.fc_encoder(x)
# Decode
x = self.fc_decoder(latent)
x = x.view(x.size(0), 512, 4, 4)
reconstructed = self.decoder(x)
return reconstructed, latent
def reconstruction_error(self, x):
"""
Compute per-sample reconstruction error (MSE)
Args:
x: Input tensor of shape (batch_size, 3, 128, 128)
Returns:
error: Tensor of shape (batch_size,) containing MSE for each sample
"""
reconstructed, _ = self.forward(x)
error = ((reconstructed - x) ** 2).view(x.size(0), -1).mean(dim=1)
return error
def load_model(checkpoint_path, device='cuda', dropout=0.1):
"""
Load a pretrained model from checkpoint
Args:
checkpoint_path: Path to the checkpoint file
device: Device to load the model on ('cuda' or 'cpu')
dropout: Dropout rate (must match training config)
Returns:
model: Loaded ResidualConvAutoencoder model in eval mode
checkpoint: Full checkpoint dictionary with metadata
"""
checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
# Get config if available
config = checkpoint.get('config', {})
latent_dim = config.get('latent_dim', 512)
dropout = config.get('dropout', dropout)
model = ResidualConvAutoencoder(latent_dim=latent_dim, dropout=dropout)
model.load_state_dict(checkpoint['model_state_dict'])
model.to(device)
model.eval()
return model, checkpoint
if __name__ == "__main__":
# Test the model
model = ResidualConvAutoencoder(latent_dim=512, dropout=0.1)
print(f"Model created with {sum(p.numel() for p in model.parameters()):,} parameters")
# Test forward pass
x = torch.randn(2, 3, 128, 128)
reconstructed, latent = model(x)
print(f"Input shape: {x.shape}")
print(f"Reconstructed shape: {reconstructed.shape}")
print(f"Latent shape: {latent.shape}")
# Test reconstruction error
error = model.reconstruction_error(x)
print(f"Reconstruction error shape: {error.shape}")
print(f"Mean error: {error.mean().item():.6f}")
|