File size: 6,697 Bytes
bb9059d
cc156cd
 
 
 
 
 
 
 
 
 
 
 
 
 
bb9059d
 
 
 
 
cc156cd
bb9059d
cc156cd
 
bb9059d
 
 
 
 
 
cc156cd
bb9059d
 
 
 
cc156cd
bb9059d
 
 
 
cc156cd
bb9059d
 
cc156cd
bb9059d
 
cc156cd
 
bb9059d
 
cc156cd
 
bb9059d
 
cc156cd
bb9059d
 
cc156cd
bb9059d
 
 
 
cc156cd
bb9059d
 
cc156cd
bb9059d
cc156cd
bb9059d
 
cc156cd
bb9059d
cc156cd
bb9059d
 
cc156cd
bb9059d
cc156cd
bb9059d
 
cc156cd
bb9059d
cc156cd
bb9059d
 
 
 
 
 
 
 
 
 
cc156cd
bb9059d
 
cc156cd
bb9059d
cc156cd
bb9059d
 
cc156cd
bb9059d
cc156cd
bb9059d
 
cc156cd
bb9059d
cc156cd
bb9059d
 
cc156cd
bb9059d
cc156cd
 
bb9059d
 
 
 
cc156cd
bb9059d
 
 
 
 
cc156cd
bb9059d
 
 
 
 
 
 
 
 
 
 
 
 
 
cc156cd
bb9059d
cc156cd
bb9059d
 
cc156cd
bb9059d
 
cc156cd
bb9059d
 
cc156cd
 
 
bb9059d
cc156cd
bb9059d
cc156cd
bb9059d
 
cc156cd
 
 
bb9059d
 
cc156cd
 
bb9059d
cc156cd
bb9059d
cc156cd
 
 
 
bb9059d
cc156cd
 
 
bb9059d
cc156cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
"""
Residual Convolutional Autoencoder Model

Usage:
    from model import ResidualConvAutoencoder, load_model
    import torch
    
    # Option 1: Create and load manually
    model = ResidualConvAutoencoder(latent_dim=512)
    checkpoint = torch.load('model_universal_best.ckpt')
    model.load_state_dict(checkpoint['model_state_dict'])
    model.eval()
    
    # Option 2: Use helper function
    model, checkpoint = load_model('model_universal_best.ckpt', device='cuda')
"""

import torch
import torch.nn as nn


class ResidualBlock(nn.Module):
    """Residual block with two convolutional layers and optional dropout"""
    def __init__(self, channels, dropout=0.1):
        super().__init__()
        self.conv1 = nn.Conv2d(channels, channels, 3, padding=1)
        self.bn1 = nn.BatchNorm2d(channels)
        self.conv2 = nn.Conv2d(channels, channels, 3, padding=1)
        self.bn2 = nn.BatchNorm2d(channels)
        self.relu = nn.ReLU(inplace=True)
        self.dropout = nn.Dropout2d(dropout) if dropout > 0 else nn.Identity()
    
    def forward(self, x):
        residual = x
        out = self.relu(self.bn1(self.conv1(x)))
        out = self.dropout(out)
        out = self.bn2(self.conv2(out))
        out += residual
        return self.relu(out)


class ResidualConvAutoencoder(nn.Module):
    """
    Residual Convolutional Autoencoder for image reconstruction
    
    Args:
        latent_dim (int): Dimension of the latent space. Default: 512
        dropout (float): Dropout rate for regularization. Default: 0.1
    
    Input:
        x: Tensor of shape (batch_size, 3, 128, 128)
        Values should be normalized to [-1, 1]
    
    Output:
        reconstructed: Tensor of shape (batch_size, 3, 128, 128)
        latent: Tensor of shape (batch_size, latent_dim)
    """
    def __init__(self, latent_dim=512, dropout=0.1):
        super().__init__()
        
        # Encoder: 128x128 -> 4x4
        self.encoder = nn.Sequential(
            nn.Conv2d(3, 64, 4, stride=2, padding=1),      # 128 -> 64
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            ResidualBlock(64, dropout),
            
            nn.Conv2d(64, 128, 4, stride=2, padding=1),    # 64 -> 32
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            ResidualBlock(128, dropout),
            
            nn.Conv2d(128, 256, 4, stride=2, padding=1),   # 32 -> 16
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            ResidualBlock(256, dropout),
            
            nn.Conv2d(256, 512, 4, stride=2, padding=1),   # 16 -> 8
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            ResidualBlock(512, dropout),
            
            nn.Conv2d(512, 512, 4, stride=2, padding=1),   # 8 -> 4
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
        )
        
        # Bottleneck
        self.fc_encoder = nn.Linear(512 * 4 * 4, latent_dim)
        self.fc_decoder = nn.Linear(latent_dim, 512 * 4 * 4)
        
        # Decoder: 4x4 -> 128x128
        self.decoder = nn.Sequential(
            nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1),  # 4 -> 8
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            ResidualBlock(512, dropout),
            
            nn.ConvTranspose2d(512, 256, 4, stride=2, padding=1),  # 8 -> 16
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            ResidualBlock(256, dropout),
            
            nn.ConvTranspose2d(256, 128, 4, stride=2, padding=1),  # 16 -> 32
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            ResidualBlock(128, dropout),
            
            nn.ConvTranspose2d(128, 64, 4, stride=2, padding=1),   # 32 -> 64
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            ResidualBlock(64, dropout),
            
            nn.ConvTranspose2d(64, 3, 4, stride=2, padding=1),     # 64 -> 128
            nn.Tanh()
        )
    
    def forward(self, x):
        """
        Forward pass through the autoencoder
        
        Args:
            x: Input tensor of shape (batch_size, 3, 128, 128)
        
        Returns:
            reconstructed: Reconstructed tensor of shape (batch_size, 3, 128, 128)
            latent: Latent representation of shape (batch_size, latent_dim)
        """
        # Encode
        x = self.encoder(x)
        x = x.view(x.size(0), -1)
        latent = self.fc_encoder(x)
        
        # Decode
        x = self.fc_decoder(latent)
        x = x.view(x.size(0), 512, 4, 4)
        reconstructed = self.decoder(x)
        
        return reconstructed, latent
    
    def reconstruction_error(self, x):
        """
        Compute per-sample reconstruction error (MSE)
        
        Args:
            x: Input tensor of shape (batch_size, 3, 128, 128)
        
        Returns:
            error: Tensor of shape (batch_size,) containing MSE for each sample
        """
        reconstructed, _ = self.forward(x)
        error = ((reconstructed - x) ** 2).view(x.size(0), -1).mean(dim=1)
        return error


def load_model(checkpoint_path, device='cuda', dropout=0.1):
    """
    Load a pretrained model from checkpoint
    
    Args:
        checkpoint_path: Path to the checkpoint file
        device: Device to load the model on ('cuda' or 'cpu')
        dropout: Dropout rate (must match training config)
    
    Returns:
        model: Loaded ResidualConvAutoencoder model in eval mode
        checkpoint: Full checkpoint dictionary with metadata
    """
    checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
    
    # Get config if available
    config = checkpoint.get('config', {})
    latent_dim = config.get('latent_dim', 512)
    dropout = config.get('dropout', dropout)
    
    model = ResidualConvAutoencoder(latent_dim=latent_dim, dropout=dropout)
    model.load_state_dict(checkpoint['model_state_dict'])
    model.to(device)
    model.eval()
    
    return model, checkpoint


if __name__ == "__main__":
    # Test the model
    model = ResidualConvAutoencoder(latent_dim=512, dropout=0.1)
    print(f"Model created with {sum(p.numel() for p in model.parameters()):,} parameters")
    
    # Test forward pass
    x = torch.randn(2, 3, 128, 128)
    reconstructed, latent = model(x)
    print(f"Input shape: {x.shape}")
    print(f"Reconstructed shape: {reconstructed.shape}")
    print(f"Latent shape: {latent.shape}")
    
    # Test reconstruction error
    error = model.reconstruction_error(x)
    print(f"Reconstruction error shape: {error.shape}")
    print(f"Mean error: {error.mean().item():.6f}")