add demo and blog
Browse files
README.md
CHANGED
@@ -11,6 +11,63 @@ Mitra regressor is a tabular foundation model that is pre-trained on purely synt
|
|
11 |
|
12 |
Mitra is based on a 12-layer Transformer of 72 M parameters, pre-trained by incorporating an in-context learning paradigm.
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
## License
|
15 |
|
16 |
-
This project is licensed under the Apache-2.0 License.
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
Mitra is based on a 12-layer Transformer of 72 M parameters, pre-trained by incorporating an in-context learning paradigm.
|
13 |
|
14 |
+
## Usage
|
15 |
+
|
16 |
+
To use Mitra regressor, install AutoGluon by running:
|
17 |
+
|
18 |
+
```sh
|
19 |
+
pip install uv
|
20 |
+
uv pip install autogluon.tabular[mitra]
|
21 |
+
```
|
22 |
+
|
23 |
+
A minimal example showing how to perform inference using the Mitra regressor:
|
24 |
+
|
25 |
+
```python
|
26 |
+
import pandas as pd
|
27 |
+
from autogluon.tabular import TabularDataset, TabularPredictor
|
28 |
+
from sklearn.model_selection import train_test_split
|
29 |
+
from sklearn.datasets import fetch_california_housing
|
30 |
+
|
31 |
+
# Load datasets
|
32 |
+
housing_data = fetch_california_housing()
|
33 |
+
housing_df = pd.DataFrame(housing_data.data, columns=housing_data.feature_names)
|
34 |
+
housing_df['target'] = housing_data.target
|
35 |
+
|
36 |
+
print("Dataset shapes:")
|
37 |
+
print(f"California Housing: {housing_df.shape}")
|
38 |
+
|
39 |
+
# Create train/test splits (80/20)
|
40 |
+
housing_train, housing_test = train_test_split(housing_df, test_size=0.2, random_state=42)
|
41 |
+
|
42 |
+
print("Training set sizes:")
|
43 |
+
print(f"Housing: {len(housing_train)} samples")
|
44 |
+
|
45 |
+
# Convert to TabularDataset
|
46 |
+
housing_train_data = TabularDataset(housing_train)
|
47 |
+
housing_test_data = TabularDataset(housing_test)
|
48 |
+
|
49 |
+
# Create predictor with Mitra for regression
|
50 |
+
print("Training Mitra regressor on California Housing dataset...")
|
51 |
+
mitra_reg_predictor = TabularPredictor(
|
52 |
+
label='target',
|
53 |
+
path='./mitra_regressor_model',
|
54 |
+
problem_type='regression'
|
55 |
+
)
|
56 |
+
mitra_reg_predictor.fit(
|
57 |
+
housing_train_data.sample(1000), # sample 1000 rows
|
58 |
+
hyperparameters={
|
59 |
+
'MITRA': {'fine_tune': False}
|
60 |
+
},
|
61 |
+
)
|
62 |
+
|
63 |
+
# Evaluate regression performance
|
64 |
+
mitra_reg_predictor.leaderboard(housing_test_data)
|
65 |
+
```
|
66 |
+
|
67 |
## License
|
68 |
|
69 |
+
This project is licensed under the Apache-2.0 License.
|
70 |
+
|
71 |
+
## Reference
|
72 |
+
|
73 |
+
Amazon Science blog: [Mitra: Mixed synthetic priors for enhancing tabular foundation models](https://www.amazon.science/blog/mitra-mixed-synthetic-priors-for-enhancing-tabular-foundation-models?utm_campaign=mitra-mixed-synthetic-priors-for-enhancing-tabular-foundation-models&utm_medium=organic-asw&utm_source=linkedin&utm_content=2025-7-22-mitra-mixed-synthetic-priors-for-enhancing-tabular-foundation-models&utm_term=2025-july)
|