File size: 26,650 Bytes
af0603b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
from typing import Optional, Tuple, Union, List, Dict

import torch
import torch.nn as nn

from transformers.modeling_outputs import TokenClassifierOutput
from transformers.models.bert import (
    BertConfig, BertModel, BertPreTrainedModel
)
from transformers.models.roberta import (
    RobertaConfig, RobertaModel, RobertaPreTrainedModel
)
from transformers.models.deberta_v2 import (
    DebertaV2Config, DebertaV2Model, DebertaV2PreTrainedModel
)
from transformers.models.modernbert.modeling_modernbert import (
    ModernBertConfig, ModernBertModel, ModernBertPreTrainedModel, ModernBertPredictionHead
)


def fixed_cross_entropy(
    source: torch.Tensor,
    target: torch.Tensor,
    num_items_in_batch: Optional[int] = None,
    ignore_index: int = -100,
    **kwargs,
) -> torch.Tensor:
    reduction = "sum" if num_items_in_batch is not None else "mean"
    loss = nn.functional.cross_entropy(source, target, ignore_index=ignore_index, reduction=reduction)
    if reduction == "sum":
        if not isinstance(num_items_in_batch, torch.Tensor):
            num_items_in_batch = torch.tensor(num_items_in_batch, device=loss.device, dtype=loss.dtype)
        elif num_items_in_batch.device != loss.device:
            num_items_in_batch = num_items_in_batch.to(loss.device)
        loss = loss / num_items_in_batch
    return loss


class BertForTokenClassification(BertPreTrainedModel):

    def __init__(self, config: BertConfig):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.bert = BertModel(config, add_pooling_layer=False)
        classifier_dropout = (
            config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
        )
        self.dropout = nn.Dropout(classifier_dropout)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        num_items_in_batch: Optional[torch.Tensor] = None,
        ignore_index: int = -100,
        **kwargs,
    ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            logits = logits.view(-1, self.num_labels)
            labels = labels.view(-1).to(logits.device)
            logits = logits.float()
            loss = fixed_cross_entropy(logits, labels, num_items_in_batch, ignore_index)

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


class CRF(nn.Module):
    """條件隨機場(CRF)層,基於更穩定的實現"""
    
    def __init__(self, num_labels: int):
        super().__init__()
        self.num_labels = num_labels
        
        # 轉移矩陣和起始/結束轉移參數
        self.start_transitions = nn.Parameter(torch.empty(num_labels))
        self.end_transitions = nn.Parameter(torch.empty(num_labels))
        self.transitions = nn.Parameter(torch.empty(num_labels, num_labels))
        
        # 用均勻分布初始化參數
        nn.init.uniform_(self.start_transitions, -0.1, 0.1)
        nn.init.uniform_(self.end_transitions, -0.1, 0.1)
        nn.init.uniform_(self.transitions, -0.1, 0.1)
    
    def _compute_log_denominator(self, features: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
        """計算配分函數的對數(log of the partition function)"""
        seq_len, batch_size, _ = features.shape
        
        # 初始化得分為起始轉移得分 + 第一個時間步的特征
        log_score = self.start_transitions + features[0]  # [batch_size, num_labels]
        
        # 逐時間步計算得分
        for i in range(1, seq_len):
            # 計算所有可能的轉移得分:前一時間步得分 + 轉移得分 + 當前時間步特征
            # [batch_size, num_labels, 1] + [num_labels, num_labels] + [batch_size, 1, num_labels]
            # -> [batch_size, num_labels, num_labels]
            next_score = (
                log_score.unsqueeze(2) +        # [batch_size, num_labels, 1]
                self.transitions +               # [num_labels, num_labels]
                features[i].unsqueeze(1)         # [batch_size, 1, num_labels]
            )
            
            # 對所有可能的前一個標籤取logsumexp
            next_score = torch.logsumexp(next_score, dim=1)
            
            # 根據mask更新得分
            log_score = torch.where(mask[i].unsqueeze(1), next_score, log_score)
        
        # 加上到結束標籤的轉移得分
        log_score += self.end_transitions
        
        # 對所有可能的最終標籤取logsumexp
        return torch.logsumexp(log_score, dim=1)
    
    def _compute_log_numerator(self, features: torch.Tensor, labels: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
        """計算給定標籤序列的得分"""
        seq_len, batch_size, _ = features.shape
        
        # 初始化得分
        score = self.start_transitions[labels[0]] + features[0, torch.arange(batch_size), labels[0]]
        
        # 逐時間步累加得分
        for i in range(1, seq_len):
            # 計算轉移得分和發射得分
            score += (
                self.transitions[labels[i-1], labels[i]] +            # 轉移得分
                features[i, torch.arange(batch_size), labels[i]]      # 發射得分
            ) * mask[i]  # 只對有效位置計算
        
        # 計算序列長度(減去1是因為索引從0開始)
        seq_lens = mask.sum(dim=0) - 1
        
        # 獲取每個序列的最後一個有效標籤
        last_tags = labels[seq_lens.long(), torch.arange(batch_size)]
        
        # 加上到結束標籤的轉移得分
        score += self.end_transitions[last_tags]
        
        return score
    
    def forward(self, emissions: torch.Tensor, tags: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
        """
        計算CRF負對數似然損失
        
        參數:
            emissions: (seq_len, batch_size, num_labels) 發射得分
            tags: (seq_len, batch_size) 真實標籤
            mask: (seq_len, batch_size) 用於處理變長序列的遮罩
            
        返回:
            CRF負對數似然損失
        """
        # 計算分子(numerator)和分母(denominator)的對數
        log_numerator = self._compute_log_numerator(emissions, tags, mask)
        log_denominator = self._compute_log_denominator(emissions, mask)
        
        # 損失是分母減分子
        loss = torch.mean(log_denominator - log_numerator)
        
        return loss
    
    def _viterbi_decode(self, features: torch.Tensor, mask: torch.Tensor) -> List[List[int]]:
        """Viterbi算法解碼,找出最可能的標籤序列"""
        seq_len, batch_size, _ = features.shape
        
        # 初始化Viterbi變量
        log_score = self.start_transitions + features[0]  # [batch_size, num_labels]
        backpointers = torch.zeros((seq_len, batch_size, self.num_labels), dtype=torch.long, device=features.device)
        
        # 逐時間步填充
        for i in range(1, seq_len):
            # 計算所有可能的轉移得分
            next_score = log_score.unsqueeze(2) + self.transitions + features[i].unsqueeze(1)
            
            # 找出每個當前標籤的最佳前一個標籤
            next_score, indices = next_score.max(dim=1)
            
            # 記錄回溯指針
            backpointers[i] = indices
            
            # 根據mask更新得分
            log_score = torch.where(mask[i].unsqueeze(1), next_score, log_score)
        
        # 加上到結束標籤的轉移得分
        log_score += self.end_transitions
        
        # 找出每個序列的最後一個標籤
        seq_lens = mask.sum(dim=0).long() - 1  # 序列長度
        
        # 回溯獲取最佳路徑
        best_paths = []
        for seq_idx in range(batch_size):
            # 找出得分最高的最終標籤
            best_label = torch.argmax(log_score[seq_idx]).item()
            best_path = [best_label]
            
            # 從後向前回溯
            for i in range(seq_lens[seq_idx], 0, -1):
                best_label = backpointers[i, seq_idx, best_label].item()
                best_path.insert(0, best_label)
                
            best_paths.append(best_path)
            
        return best_paths
    
    def decode(self, emissions: torch.Tensor, mask: torch.Tensor) -> List[List[int]]:
        """使用Viterbi解碼找出最可能的標籤序列"""
        # 確保mask是bool類型
        if mask.dtype != torch.bool:
            mask = mask.bool()
        
        with torch.no_grad():
            return self._viterbi_decode(emissions, mask)


class BertCRFForTokenClassification(BertPreTrainedModel):
    """BERT模型與CRF層結合用於token分類"""

    def __init__(self, config: BertConfig):
        super().__init__(config)
        self.num_labels = config.num_labels
        
        # BERT層
        self.bert = BertModel(config, add_pooling_layer=False)
        
        # Dropout和分類器
        classifier_dropout = (
            config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
        )
        self.dropout = nn.Dropout(classifier_dropout)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
        
        # CRF層
        self.crf = CRF(config.num_labels)
        
        # 初始化權重
        self.post_init()

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        ignore_index: int = -100,
        **kwargs,
    ) -> Union[Tuple[torch.Tensor], Dict[str, torch.Tensor]]:
        """
        使用CRF進行序列標注的前向傳播
        
        參數:
            labels: 標籤序列,用於計算損失
            ignore_index: 忽略的標籤值,通常為-100
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # BERT前向傳播
        outputs = self.bert(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]
        sequence_output = self.dropout(sequence_output)
        
        # 獲取發射分數
        logits = self.classifier(sequence_output)  # [batch_size, seq_len, num_labels]
        
        loss = None
        if labels is not None:
            # 準備CRF所需的輸入格式
            # 交換維度:[batch_size, seq_len, num_labels] -> [seq_len, batch_size, num_labels]
            emissions = logits.transpose(0, 1)
            
            # 交換維度:[batch_size, seq_len] -> [seq_len, batch_size]
            if attention_mask is not None:
                attention_mask_t = attention_mask.transpose(0, 1).bool()
            else:
                attention_mask_t = torch.ones(emissions.shape[:2], dtype=torch.bool, device=emissions.device)
            
            # 處理ignore_index
            if ignore_index is not None:
                labels_mask = (labels != ignore_index)
                attention_mask_t = attention_mask_t & labels_mask.transpose(0, 1)
                
                # 創建一個不包含ignore_index的標籤tensor
                crf_labels = labels.clone()
                crf_labels[~labels_mask] = 0  # 將ignore的位置臨時設為0,避免其影響CRF計算
                crf_labels_t = crf_labels.transpose(0, 1)
            else:
                crf_labels_t = labels.transpose(0, 1)
                
            # 計算CRF損失
            loss = self.crf(
                emissions=emissions,
                tags=crf_labels_t,
                mask=attention_mask_t
            )
        
        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output
        
        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )
    
    def decode(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> List[List[int]]:
        """
        解碼最可能的標籤序列
        """
        # 不計算梯度
        with torch.no_grad():
            # BERT前向傳播
            outputs = self.bert(
                input_ids=input_ids,
                attention_mask=attention_mask,
                token_type_ids=token_type_ids,
                return_dict=True,
                **kwargs,
            )

            sequence_output = outputs[0]
            sequence_output = self.dropout(sequence_output)
            
            # 獲取發射分數
            logits = self.classifier(sequence_output)  # [batch_size, seq_len, num_labels]
            
            # 交換維度:[batch_size, seq_len, num_labels] -> [seq_len, batch_size, num_labels]
            emissions = logits.transpose(0, 1)
            
            # 準備遮罩
            if attention_mask is not None:
                mask = attention_mask.transpose(0, 1).bool()
            else:
                mask = torch.ones(emissions.shape[:2], dtype=torch.bool, device=emissions.device)
                
            # 使用Viterbi算法解碼
            best_tags = self.crf.decode(emissions, mask)
            
            return best_tags


class RobertaForTokenClassification(RobertaPreTrainedModel):

    def __init__(self, config: RobertaConfig):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.roberta = RobertaModel(config, add_pooling_layer=False)
        classifier_dropout = (
            config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
        )
        self.dropout = nn.Dropout(classifier_dropout)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        num_items_in_batch: Optional[torch.Tensor] = None,
        ignore_index: int = -100,
        **kwargs,
    ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
        r"""
        token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,1]`:

            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.
            This parameter can only be used when the model is initialized with `type_vocab_size` parameter with value
            >= 2. All the value in this tensor should be always < type_vocab_size.

            [What are token type IDs?](../glossary#token-type-ids)
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.roberta(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            # Upcast to float if we need to compute the loss to avoid potential precision issues
            logits = logits.view(-1, self.num_labels)
            labels = labels.view(-1).to(logits.device)
            logits = logits.float()
            loss = fixed_cross_entropy(logits, labels, num_items_in_batch, ignore_index)

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


class DebertaV2ForTokenClassification(DebertaV2PreTrainedModel):

    def __init__(self, config: DebertaV2Config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.deberta = DebertaV2Model(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        num_items_in_batch: Optional[torch.Tensor] = None,
        ignore_index: int = -100,
        **kwargs,
    ) -> Union[Tuple, TokenClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.deberta(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            # Upcast to float if we need to compute the loss to avoid potential precision issues
            logits = logits.view(-1, self.num_labels)
            labels = labels.view(-1).to(logits.device)
            logits = logits.float()
            loss = fixed_cross_entropy(logits, labels, num_items_in_batch, ignore_index)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return TokenClassifierOutput(
            loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
        )


class ModernBertForTokenClassification(ModernBertPreTrainedModel):

    def __init__(self, config: ModernBertConfig):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.model = ModernBertModel(config)
        self.head = ModernBertPredictionHead(config)
        self.drop = torch.nn.Dropout(config.classifier_dropout)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        sliding_window_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        indices: Optional[torch.Tensor] = None,
        cu_seqlens: Optional[torch.Tensor] = None,
        max_seqlen: Optional[int] = None,
        batch_size: Optional[int] = None,
        seq_len: Optional[int] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        num_items_in_batch: Optional[torch.Tensor] = None,
        ignore_index: int = -100,
        **kwargs,
    ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
        r"""
        sliding_window_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding or far-away tokens. In ModernBert, only every few layers
            perform global attention, while the rest perform local attention. This mask is used to avoid attending to
            far-away tokens in the local attention layers when not using Flash Attention.
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
        indices (`torch.Tensor` of shape `(total_unpadded_tokens,)`, *optional*):
            Indices of the non-padding tokens in the input sequence. Used for unpadding the output.
        cu_seqlens (`torch.Tensor` of shape `(batch + 1,)`, *optional*):
            Cumulative sequence lengths of the input sequences. Used to index the unpadded tensors.
        max_seqlen (`int`, *optional*):
            Maximum sequence length in the batch excluding padding tokens. Used to unpad input_ids and pad output tensors.
        batch_size (`int`, *optional*):
            Batch size of the input sequences. Used to pad the output tensors.
        seq_len (`int`, *optional*):
            Sequence length of the input sequences including padding tokens. Used to pad the output tensors.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        self._maybe_set_compile()

        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            sliding_window_mask=sliding_window_mask,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            indices=indices,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
            batch_size=batch_size,
            seq_len=seq_len,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        last_hidden_state = outputs[0]

        last_hidden_state = self.head(last_hidden_state)
        last_hidden_state = self.drop(last_hidden_state)
        logits = self.classifier(last_hidden_state)

        loss = None
        if labels is not None:
            # Upcast to float if we need to compute the loss to avoid potential precision issues
            logits = logits.view(-1, self.num_labels)
            labels = labels.view(-1).to(logits.device)
            logits = logits.float()
            loss = fixed_cross_entropy(logits, labels, num_items_in_batch, ignore_index)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )