--- language: - en tags: - token-classification - ner - pytorch - custom-model library_name: transformers --- # UnmaskingQwen3 for Token Classification This model is a fine-tuned version of a custom UnmaskingQwen3ForTokenClassification model for token classification tasks. ## Model Details - **Model Type**: Custom UnmaskingQwen3ForTokenClassification - **Task**: Token Classification (NER/POS/Chunking) - **Training Framework**: Transformers + Accelerate ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification # Load the model and tokenizer tokenizer = AutoTokenizer.from_pretrained("your-username/your-model-name", trust_remote_code=True) model = AutoModelForTokenClassification.from_pretrained("your-username/your-model-name", trust_remote_code=True) # Use for inference inputs = tokenizer(["Your text here"], return_tensors="pt", is_split_into_words=False) outputs = model(**inputs) predictions = outputs.logits.argmax(dim=-1) ``` ## Training Details - **Training Data**: ['automated-analytics/ai4privacy-pii-masking-en-v1-ner-coarse', 'automated-analytics/gretel-pii-masking-en-v1-ner-coarse'] - **Learning Rate**: 5e-05 - **Batch Size**: 128 - **Epochs**: 3 - **Max Length**: 128 ## Important Note This model uses a custom model class. Make sure to use `trust_remote_code=True` when loading the model.