File size: 42,420 Bytes
2222fb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 |
# Unmasking Qwen Token Classification Models
# Automatically generated file for model use with trust_remote_code=True
import torch
import torch.nn as nn
from transformers import PreTrainedModel
from transformers.modeling_outputs import TokenClassifierOutput
from typing import Optional, Tuple, Union, List, Dict, Callable
import torch
import torch.nn as nn
from transformers.modeling_outputs import TokenClassifierOutput
from transformers.models.bert import (
BertConfig, BertModel, BertPreTrainedModel
)
from transformers.models.roberta import (
RobertaConfig, RobertaModel, RobertaPreTrainedModel
)
from transformers.models.deberta_v2 import (
DebertaV2Config, DebertaV2Model, DebertaV2PreTrainedModel
)
from transformers.models.modernbert.modeling_modernbert import (
ModernBertConfig, ModernBertModel, ModernBertPreTrainedModel, ModernBertPredictionHead
)
from transformers import Qwen2Config
from transformers.modeling_outputs import TokenClassifierOutput, BaseModelOutputWithPast
from transformers.cache_utils import Cache
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.processing_utils import Unpack
from transformers.models.qwen2.modeling_qwen2 import (
Qwen2PreTrainedModel,
Qwen2Model,
SlidingWindowCache,
StaticCache
)
from transformers.models.qwen3.modeling_qwen3 import (
Qwen3PreTrainedModel,
Qwen3Config,
Qwen3Model,
Qwen3RMSNorm,
Qwen3DecoderLayer,
Qwen3Attention,
BaseModelOutputWithPast,
TokenClassifierOutput,
Cache,
FlashAttentionKwargs,
Unpack,
Qwen3RotaryEmbedding,
Qwen3MLP,
apply_rotary_pos_emb,
can_return_tuple,
eager_attention_forward
)
def fixed_cross_entropy(
source: torch.Tensor,
target: torch.Tensor,
num_items_in_batch: Optional[int] = None,
ignore_index: int = -100,
**kwargs,
) -> torch.Tensor:
reduction = "sum" if num_items_in_batch is not None else "mean"
loss = nn.functional.cross_entropy(source, target, ignore_index=ignore_index, reduction=reduction)
if reduction == "sum":
if not isinstance(num_items_in_batch, torch.Tensor):
num_items_in_batch = torch.tensor(num_items_in_batch, device=loss.device, dtype=loss.dtype)
elif num_items_in_batch.device != loss.device:
num_items_in_batch = num_items_in_batch.to(loss.device)
loss = loss / num_items_in_batch
return loss
class BertForTokenClassification(BertPreTrainedModel):
def __init__(self, config: BertConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.bert = BertModel(config, add_pooling_layer=False)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
num_items_in_batch: Optional[torch.Tensor] = None,
ignore_index: int = -100,
**kwargs,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
logits = logits.view(-1, self.num_labels)
labels = labels.view(-1).to(logits.device)
logits = logits.float()
loss = fixed_cross_entropy(logits, labels, num_items_in_batch, ignore_index)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class CRF(nn.Module):
"""條件隨機場(CRF)層,基於更穩定的實現"""
def __init__(self, num_labels: int):
super().__init__()
self.num_labels = num_labels
# 轉移矩陣和起始/結束轉移參數
self.start_transitions = nn.Parameter(torch.empty(num_labels))
self.end_transitions = nn.Parameter(torch.empty(num_labels))
self.transitions = nn.Parameter(torch.empty(num_labels, num_labels))
# 用均勻分布初始化參數
nn.init.uniform_(self.start_transitions, -0.1, 0.1)
nn.init.uniform_(self.end_transitions, -0.1, 0.1)
nn.init.uniform_(self.transitions, -0.1, 0.1)
def _compute_log_denominator(self, features: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
"""計算配分函數的對數(log of the partition function)"""
seq_len, batch_size, _ = features.shape
# 初始化得分為起始轉移得分 + 第一個時間步的特征
log_score = self.start_transitions + features[0] # [batch_size, num_labels]
# 逐時間步計算得分
for i in range(1, seq_len):
# 計算所有可能的轉移得分:前一時間步得分 + 轉移得分 + 當前時間步特征
# [batch_size, num_labels, 1] + [num_labels, num_labels] + [batch_size, 1, num_labels]
# -> [batch_size, num_labels, num_labels]
next_score = (
log_score.unsqueeze(2) + # [batch_size, num_labels, 1]
self.transitions + # [num_labels, num_labels]
features[i].unsqueeze(1) # [batch_size, 1, num_labels]
)
# 對所有可能的前一個標籤取logsumexp
next_score = torch.logsumexp(next_score, dim=1)
# 根據mask更新得分
log_score = torch.where(mask[i].unsqueeze(1), next_score, log_score)
# 加上到結束標籤的轉移得分
log_score += self.end_transitions
# 對所有可能的最終標籤取logsumexp
return torch.logsumexp(log_score, dim=1)
def _compute_log_numerator(self, features: torch.Tensor, labels: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
"""計算給定標籤序列的得分"""
seq_len, batch_size, _ = features.shape
# 初始化得分
score = self.start_transitions[labels[0]] + features[0, torch.arange(batch_size), labels[0]]
# 逐時間步累加得分
for i in range(1, seq_len):
# 計算轉移得分和發射得分
score += (
self.transitions[labels[i-1], labels[i]] + # 轉移得分
features[i, torch.arange(batch_size), labels[i]] # 發射得分
) * mask[i] # 只對有效位置計算
# 計算序列長度(減去1是因為索引從0開始)
seq_lens = mask.sum(dim=0) - 1
# 獲取每個序列的最後一個有效標籤
last_tags = labels[seq_lens.long(), torch.arange(batch_size)]
# 加上到結束標籤的轉移得分
score += self.end_transitions[last_tags]
return score
def forward(self, emissions: torch.Tensor, tags: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
"""
計算CRF負對數似然損失
參數:
emissions: (seq_len, batch_size, num_labels) 發射得分
tags: (seq_len, batch_size) 真實標籤
mask: (seq_len, batch_size) 用於處理變長序列的遮罩
返回:
CRF負對數似然損失
"""
# 計算分子(numerator)和分母(denominator)的對數
log_numerator = self._compute_log_numerator(emissions, tags, mask)
log_denominator = self._compute_log_denominator(emissions, mask)
# 損失是分母減分子
loss = torch.mean(log_denominator - log_numerator)
return loss
def _viterbi_decode(self, features: torch.Tensor, mask: torch.Tensor) -> List[List[int]]:
"""Viterbi算法解碼,找出最可能的標籤序列"""
seq_len, batch_size, _ = features.shape
# 初始化Viterbi變量
log_score = self.start_transitions + features[0] # [batch_size, num_labels]
backpointers = torch.zeros((seq_len, batch_size, self.num_labels), dtype=torch.long, device=features.device)
# 逐時間步填充
for i in range(1, seq_len):
# 計算所有可能的轉移得分
next_score = log_score.unsqueeze(2) + self.transitions + features[i].unsqueeze(1)
# 找出每個當前標籤的最佳前一個標籤
next_score, indices = next_score.max(dim=1)
# 記錄回溯指針
backpointers[i] = indices
# 根據mask更新得分
log_score = torch.where(mask[i].unsqueeze(1), next_score, log_score)
# 加上到結束標籤的轉移得分
log_score += self.end_transitions
# 找出每個序列的最後一個標籤
seq_lens = mask.sum(dim=0).long() - 1 # 序列長度
# 回溯獲取最佳路徑
best_paths = []
for seq_idx in range(batch_size):
# 找出得分最高的最終標籤
best_label = torch.argmax(log_score[seq_idx]).item()
best_path = [best_label]
# 從後向前回溯
for i in range(seq_lens[seq_idx], 0, -1):
best_label = backpointers[i, seq_idx, best_label].item()
best_path.insert(0, best_label)
best_paths.append(best_path)
return best_paths
def decode(self, emissions: torch.Tensor, mask: torch.Tensor) -> List[List[int]]:
"""使用Viterbi解碼找出最可能的標籤序列"""
# 確保mask是bool類型
if mask.dtype != torch.bool:
mask = mask.bool()
with torch.no_grad():
return self._viterbi_decode(emissions, mask)
class BertCRFForTokenClassification(BertPreTrainedModel):
"""BERT模型與CRF層結合用於token分類"""
def __init__(self, config: BertConfig):
super().__init__(config)
self.num_labels = config.num_labels
# BERT層
self.bert = BertModel(config, add_pooling_layer=False)
# Dropout和分類器
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# CRF層
self.crf = CRF(config.num_labels)
# 初始化權重
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
ignore_index: int = -100,
**kwargs,
) -> Union[Tuple[torch.Tensor], Dict[str, torch.Tensor]]:
"""
使用CRF進行序列標注的前向傳播
參數:
labels: 標籤序列,用於計算損失
ignore_index: 忽略的標籤值,通常為-100
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# BERT前向傳播
outputs = self.bert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
# 獲取發射分數
logits = self.classifier(sequence_output) # [batch_size, seq_len, num_labels]
loss = None
if labels is not None:
# 準備CRF所需的輸入格式
# 交換維度:[batch_size, seq_len, num_labels] -> [seq_len, batch_size, num_labels]
emissions = logits.transpose(0, 1)
# 交換維度:[batch_size, seq_len] -> [seq_len, batch_size]
if attention_mask is not None:
attention_mask_t = attention_mask.transpose(0, 1).bool()
else:
attention_mask_t = torch.ones(emissions.shape[:2], dtype=torch.bool, device=emissions.device)
# 處理ignore_index
if ignore_index is not None:
labels_mask = (labels != ignore_index)
attention_mask_t = attention_mask_t & labels_mask.transpose(0, 1)
# 創建一個不包含ignore_index的標籤tensor
crf_labels = labels.clone()
crf_labels[~labels_mask] = 0 # 將ignore的位置臨時設為0,避免其影響CRF計算
crf_labels_t = crf_labels.transpose(0, 1)
else:
crf_labels_t = labels.transpose(0, 1)
# 計算CRF損失
loss = self.crf(
emissions=emissions,
tags=crf_labels_t,
mask=attention_mask_t
)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def decode(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
**kwargs,
) -> List[List[int]]:
"""
解碼最可能的標籤序列
"""
# 不計算梯度
with torch.no_grad():
# BERT前向傳播
outputs = self.bert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
return_dict=True,
**kwargs,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
# 獲取發射分數
logits = self.classifier(sequence_output) # [batch_size, seq_len, num_labels]
# 交換維度:[batch_size, seq_len, num_labels] -> [seq_len, batch_size, num_labels]
emissions = logits.transpose(0, 1)
# 準備遮罩
if attention_mask is not None:
mask = attention_mask.transpose(0, 1).bool()
else:
mask = torch.ones(emissions.shape[:2], dtype=torch.bool, device=emissions.device)
# 使用Viterbi算法解碼
best_tags = self.crf.decode(emissions, mask)
return best_tags
class RobertaForTokenClassification(RobertaPreTrainedModel):
def __init__(self, config: RobertaConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.roberta = RobertaModel(config, add_pooling_layer=False)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
num_items_in_batch: Optional[torch.Tensor] = None,
ignore_index: int = -100,
**kwargs,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
This parameter can only be used when the model is initialized with `type_vocab_size` parameter with value
>= 2. All the value in this tensor should be always < type_vocab_size.
[What are token type IDs?](../glossary#token-type-ids)
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
# Upcast to float if we need to compute the loss to avoid potential precision issues
logits = logits.view(-1, self.num_labels)
labels = labels.view(-1).to(logits.device)
logits = logits.float()
loss = fixed_cross_entropy(logits, labels, num_items_in_batch, ignore_index)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class DebertaV2ForTokenClassification(DebertaV2PreTrainedModel):
def __init__(self, config: DebertaV2Config):
super().__init__(config)
self.num_labels = config.num_labels
self.deberta = DebertaV2Model(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
num_items_in_batch: Optional[torch.Tensor] = None,
ignore_index: int = -100,
**kwargs,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.deberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
# Upcast to float if we need to compute the loss to avoid potential precision issues
logits = logits.view(-1, self.num_labels)
labels = labels.view(-1).to(logits.device)
logits = logits.float()
loss = fixed_cross_entropy(logits, labels, num_items_in_batch, ignore_index)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
class ModernBertForTokenClassification(ModernBertPreTrainedModel):
def __init__(self, config: ModernBertConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.model = ModernBertModel(config)
self.head = ModernBertPredictionHead(config)
self.drop = torch.nn.Dropout(config.classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
sliding_window_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
indices: Optional[torch.Tensor] = None,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
batch_size: Optional[int] = None,
seq_len: Optional[int] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
num_items_in_batch: Optional[torch.Tensor] = None,
ignore_index: int = -100,
**kwargs,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
sliding_window_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding or far-away tokens. In ModernBert, only every few layers
perform global attention, while the rest perform local attention. This mask is used to avoid attending to
far-away tokens in the local attention layers when not using Flash Attention.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
indices (`torch.Tensor` of shape `(total_unpadded_tokens,)`, *optional*):
Indices of the non-padding tokens in the input sequence. Used for unpadding the output.
cu_seqlens (`torch.Tensor` of shape `(batch + 1,)`, *optional*):
Cumulative sequence lengths of the input sequences. Used to index the unpadded tensors.
max_seqlen (`int`, *optional*):
Maximum sequence length in the batch excluding padding tokens. Used to unpad input_ids and pad output tensors.
batch_size (`int`, *optional*):
Batch size of the input sequences. Used to pad the output tensors.
seq_len (`int`, *optional*):
Sequence length of the input sequences including padding tokens. Used to pad the output tensors.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
self._maybe_set_compile()
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
sliding_window_mask=sliding_window_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
indices=indices,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
batch_size=batch_size,
seq_len=seq_len,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = outputs[0]
last_hidden_state = self.head(last_hidden_state)
last_hidden_state = self.drop(last_hidden_state)
logits = self.classifier(last_hidden_state)
loss = None
if labels is not None:
# Upcast to float if we need to compute the loss to avoid potential precision issues
logits = logits.view(-1, self.num_labels)
labels = labels.view(-1).to(logits.device)
logits = logits.float()
loss = fixed_cross_entropy(logits, labels, num_items_in_batch, ignore_index)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class UnmaskingQwen3Attention(Qwen3Attention):
"""Multi-headed attention without causal mask for bidirectional attention"""
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# Use eager attention as default
attention_interface: Callable = eager_attention_forward
# Remove causal mask by setting attention_mask to None or creating a non-causal mask
# For bidirectional attention, we don't want any masking except padding
if attention_mask is not None and 0.0 in attention_mask:
# Keep only padding mask if it exists, remove causal part
# This allows tokens to attend to future tokens
pass
else:
# If there's no padding, we can set attention_mask to None for full attention
attention_mask = None
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
sliding_window=self.sliding_window,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class UnmaskingQwen3DecoderLayer(Qwen3DecoderLayer):
def __init__(self, config: Qwen3Config, layer_idx: int):
super(Qwen3DecoderLayer, self).__init__()
self.hidden_size = config.hidden_size
self.self_attn = UnmaskingQwen3Attention(config=config, layer_idx=layer_idx)
self.mlp = Qwen3MLP(config)
self.input_layernorm = Qwen3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Qwen3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
class UnmaskingQwen3Model(Qwen3Model):
def __init__(self, config: Qwen3Config):
super(Qwen3PreTrainedModel, self).__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[UnmaskingQwen3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = Qwen3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = Qwen3RotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
# Override the causal mask creation to create a non-causal mask
# This allows bidirectional attention
if attention_mask is None:
# If no attention mask is provided, return None to allow full attention
return None
# If attention_mask is provided, it's likely for padding
# Convert it to the right format but without the causal constraint
dtype = input_tensor.dtype
min_dtype = torch.finfo(dtype).min
batch_size = input_tensor.shape[0]
sequence_length = input_tensor.shape[1]
if isinstance(attention_mask, torch.Tensor) and attention_mask.dim() == 2:
# Convert 2D padding mask to 4D attention mask
expanded_attn_mask = attention_mask[:, None, None, :]
expanded_attn_mask = expanded_attn_mask.to(dtype=dtype)
expanded_attn_mask = (1.0 - expanded_attn_mask) * min_dtype
return expanded_attn_mask
# If it's already 4D, return as is
return attention_mask
class UnmaskingQwen3ForTokenClassification(Qwen3PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = UnmaskingQwen3Model(config)
if getattr(config, "classifier_dropout", None) is not None:
classifier_dropout = config.classifier_dropout
elif getattr(config, "hidden_dropout", None) is not None:
classifier_dropout = config.hidden_dropout
else:
classifier_dropout = 0.1
self.dropout = nn.Dropout(classifier_dropout)
self.score = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@can_return_tuple
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> TokenClassifierOutput:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = outputs.last_hidden_state
sequence_output = self.dropout(sequence_output)
logits = self.score(sequence_output)
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class UnmaskingQwen2Model(Qwen2Model):
"""
UnmaskingQwen2Model is a modified version of Qwen2Model that removes the causal mask,
allowing bidirectional attention similar to BERT-like models.
"""
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
"""
Override the causal mask creation to create a non-causal (bidirectional) mask.
This allows each token to attend to all tokens in the sequence.
"""
# For flash attention, just return None or the padding mask
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For flex attention, keep the same behavior but without causality
if self.config._attn_implementation == "flex_attention":
if isinstance(attention_mask, torch.Tensor):
# We don't convert to causal mask here
return attention_mask
return attention_mask
# For other attention implementations, create a non-causal mask
batch_size = input_tensor.shape[0]
sequence_length = input_tensor.shape[1]
dtype = input_tensor.dtype
# For SlidingWindowCache or StaticCache
if isinstance(past_key_values, (SlidingWindowCache, StaticCache)):
target_length = past_key_values.get_max_cache_shape()
else:
# For DynamicCache or no cache
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_key_values.get_seq_length() + sequence_length + 1
if past_key_values is not None
else sequence_length
)
# Create a non-causal mask (all zeros, allowing full attention)
# Instead of using min_dtype to mask out future tokens, we use zeros to allow attention to all positions
non_causal_mask = torch.zeros(
(batch_size, 1, sequence_length, target_length),
dtype=dtype,
device=input_tensor.device,
)
# If there's a padding attention mask, apply it
if attention_mask is not None:
if attention_mask.dim() == 2:
# Convert 2D attention mask to 4D
expanded_mask = attention_mask[:, None, None, :].expand(
batch_size, 1, sequence_length, attention_mask.shape[-1]
).to(non_causal_mask.device)
# Apply padding mask (0 for tokens to attend to, large negative for padded positions)
min_dtype = torch.finfo(dtype).min
padding_mask = expanded_mask == 0
non_causal_mask = non_causal_mask.masked_fill(padding_mask, min_dtype)
elif attention_mask.dim() == 4:
# If already 4D, use as is
non_causal_mask = attention_mask
return non_causal_mask
class UnmaskingQwen2ForTokenClassification(Qwen2PreTrainedModel):
"""
Qwen2 model with a token classification head on top, but with bidirectional attention.
This is achieved by using the UnmaskingQwen2Model which removes the causal mask.
"""
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
# Use the UnmaskingQwen2Model instead of the standard Qwen2Model
self.model = UnmaskingQwen2Model(config)
if getattr(config, "classifier_dropout", None) is not None:
classifier_dropout = config.classifier_dropout
elif getattr(config, "hidden_dropout", None) is not None:
classifier_dropout = config.hidden_dropout
else:
classifier_dropout = 0.1
self.dropout = nn.Dropout(classifier_dropout)
self.score = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> TokenClassifierOutput:
"""
Forward pass for token classification with bidirectional attention.
Args:
input_ids: Input token IDs
attention_mask: Attention mask
position_ids: Position IDs
past_key_values: Past key values for efficient generation
inputs_embeds: Pre-computed input embeddings
labels: Token classification labels
use_cache: Whether to use cache for efficient generation
output_attentions: Whether to output attention weights
output_hidden_states: Whether to output hidden states
flash_attn_kwargs: Additional arguments for flash attention
Returns:
TokenClassifierOutput with loss, logits, and optional hidden states and attentions
"""
outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
**flash_attn_kwargs,
)
sequence_output = outputs.last_hidden_state
sequence_output = self.dropout(sequence_output)
logits = self.score(sequence_output)
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.config)
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|