Upload folder using huggingface_hub
Browse files- README.md +105 -65
- draft/qwen2.py +641 -0
README.md
CHANGED
@@ -12,33 +12,30 @@ base_model:
|
|
12 |
<div align="center">
|
13 |
|
14 |
# Baichuan-M2-32B
|
15 |
-
|
16 |
[](https://opensource.org/licenses/Apache-2.0)
|
17 |
[](https://huggingface.co/baichuan-inc/Baichuan-M2-32B)
|
18 |
|
19 |
</div>
|
20 |
|
21 |
-
## 🌟
|
22 |
-
|
23 |
-
Baichuan-M2-32B 是百川智能推出的医疗增强推理模型,这是百川开源发布的第二个医疗增强模型,专为真实世界的医疗推理任务设计。该模型基于 Qwen2.5-32B 基座,通过创新的大型验证器系统(Large Verifier System)从真实世界的医疗问题出发,进行医疗领域后训练对齐,在保持模型通用能力的同时,实现了医疗效果的突破性提升。
|
24 |
|
25 |
-
|
26 |
|
27 |
-
|
28 |
|
29 |
-
|
30 |
-
- 🏆 **全球最强医疗开源模型**:在 HealthBench 评测集上超越所有开源模型及众多前沿闭源模型,是最接近 GPT-5 医疗能力的开源大模型
|
31 |
-
- 🧠 **医生思维对齐**:基于真实病例数据和患者模拟器训练,具备临床诊断思维和鲁棒的医患交互能力
|
32 |
-
- ⚡ **高效部署与推理**:支持 4bit 量化在 RTX4090 单卡部署,MTP 版本单用户场景下 token 吞吐提升 58.5%
|
33 |
|
|
|
|
|
|
|
|
|
34 |
|
|
|
35 |
|
36 |
-
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
| 模型名称 | HealthBench | HealthBench-Hard | HealthBench-Consensus |
|
41 |
-
|----------|-------------|------------------|-----------------------|
|
42 |
| Baichuan-M2 | 60.1 | 34.7 | 91.5 |
|
43 |
| gpt-oss-120b | 57.6 | 30 | 90 |
|
44 |
| Qwen3-235B-A22B-Thinking-2507 | 55.2 | 25.9 | 90.6 |
|
@@ -47,80 +44,123 @@ Baichuan-M2 采用了三个核心技术创新:首先通过**大型验证器系
|
|
47 |
| Kimi-K2 | 43 | 10.7 | 90.9 |
|
48 |
| gpt-oss-20b | 42.5 | 10.8 | 82.6 |
|
49 |
|
50 |
-
###
|
51 |
|
52 |
-
|
|
53 |
-
|
54 |
| AIME24 | 83.4 | 81.4 |
|
55 |
| AIME25 | 72.9 | 72.9 |
|
56 |
| Arena-Hard-v2.0 | 45.8 | 44.5 |
|
57 |
| CFBench | 77.6 | 75.7 |
|
58 |
| WritingBench | 8.56 | 7.90 |
|
59 |
|
60 |
-
|
61 |
-
|
62 |
|
63 |
-
##
|
64 |
|
65 |
-
###
|
66 |
-
-
|
67 |
-
-
|
68 |
-
-
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
|
71 |
-
- **Mid-Training**:医疗知识注入的同时保持通用能力
|
72 |
-
- **强化学习**:多阶段 RL 策略优化
|
73 |
-
- **通专兼顾**:2:2:1 配比的医疗、通用、数学数据
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
### 安装使用
|
78 |
-
|
79 |
-
```bash
|
80 |
-
# 安装依赖
|
81 |
-
pip install transformers torch vllm sglang
|
82 |
-
|
83 |
-
# Transformers 使用
|
84 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
85 |
model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan-M2-32B", trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
# vLLM 使用(推荐)
|
88 |
-
from vllm import LLM
|
89 |
-
llm = LLM(model="baichuan-inc/Baichuan-M2-32B", trust_remote_code=True)
|
90 |
-
|
91 |
-
# SGLang 使用
|
92 |
-
python -m sglang.launch_server --model-path baichuan-inc/Baichuan-M2-32B
|
93 |
```
|
94 |
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
-
|
98 |
-
2. **适用场景**:医学教育、健康咨询、临床辅助决策等
|
99 |
-
3. **安全使用**:建议在专业医疗人员指导下使用
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
-
|
108 |
-
-
|
109 |
-
-
|
110 |
-
-
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
-
|
|
|
|
|
|
|
113 |
|
114 |
-
##
|
|
|
115 |
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
-
|
|
|
|
|
119 |
|
120 |
---
|
121 |
-
|
122 |
<div align="center">
|
123 |
|
124 |
-
|
|
|
|
|
125 |
|
126 |
-
</div>
|
|
|
12 |
<div align="center">
|
13 |
|
14 |
# Baichuan-M2-32B
|
|
|
15 |
[](https://opensource.org/licenses/Apache-2.0)
|
16 |
[](https://huggingface.co/baichuan-inc/Baichuan-M2-32B)
|
17 |
|
18 |
</div>
|
19 |
|
20 |
+
## 🌟 Model Overview
|
|
|
|
|
21 |
|
22 |
+
Baichuan-M2-32B is BaiChuan AI's medical-enhanced reasoning model, the second medical model released by BaiChuan. Designed for real-world medical reasoning tasks, this model builds upon Qwen2.5-32B with an innovative Large Verifier System. Through domain-specific fine-tuning on real-world medical questions, it achieves breakthrough medical performance while maintaining strong general capabilities.
|
23 |
|
24 |
+
**Model Features:**
|
25 |
|
26 |
+
Baichuan-M2 incorporates three core technical innovations: First, through the Large Verifier System, it combines medical scenario characteristics to design a comprehensive medical verification framework, including patient simulators and multi-dimensional verification mechanisms; second, through medical domain adaptation enhancement via Mid-Training, it achieves lightweight and efficient medical domain adaptation while preserving general capabilities; finally, it employs a multi-stage reinforcement learning strategy, decomposing complex RL tasks into hierarchical training stages to progressively enhance the model's medical knowledge, reasoning, and patient interaction capabilities.
|
|
|
|
|
|
|
27 |
|
28 |
+
**Core Highlights:**
|
29 |
+
- 🏆 **World's Leading Open-Source Medical Model**: Outperforms all open-source models and many proprietary models on HealthBench, achieving medical capabilities closest to GPT-5
|
30 |
+
- 🧠 **Doctor-Thinking Alignment**: Trained on real clinical cases and patient simulators, with clinical diagnostic thinking and robust patient interaction capabilities
|
31 |
+
- ⚡ **Efficient Deployment**: Supports 4-bit quantization for single-RTX4090 deployment, with 58.5% higher token throughput in MTP version for single-user scenarios
|
32 |
|
33 |
+
## 📊 Performance Metrics
|
34 |
|
35 |
+
### HealthBench Scores
|
36 |
|
37 |
+
| Model Name | HealthBench | HealthBench-Hard | HealthBench-Consensus |
|
38 |
+
|------------|-------------|------------------|-----------------------|
|
|
|
|
|
39 |
| Baichuan-M2 | 60.1 | 34.7 | 91.5 |
|
40 |
| gpt-oss-120b | 57.6 | 30 | 90 |
|
41 |
| Qwen3-235B-A22B-Thinking-2507 | 55.2 | 25.9 | 90.6 |
|
|
|
44 |
| Kimi-K2 | 43 | 10.7 | 90.9 |
|
45 |
| gpt-oss-20b | 42.5 | 10.8 | 82.6 |
|
46 |
|
47 |
+
### General Performance
|
48 |
|
49 |
+
| Benchmark | Baichuan-M2-32B | Qwen3-32B |
|
50 |
+
|-----------|-----------------|-----------|
|
51 |
| AIME24 | 83.4 | 81.4 |
|
52 |
| AIME25 | 72.9 | 72.9 |
|
53 |
| Arena-Hard-v2.0 | 45.8 | 44.5 |
|
54 |
| CFBench | 77.6 | 75.7 |
|
55 |
| WritingBench | 8.56 | 7.90 |
|
56 |
|
57 |
+
*Note: AIME uses max_tokens=64k, others use 32k; temperature=0.6 for all tests.*
|
|
|
58 |
|
59 |
+
## 🔧 Technical Features
|
60 |
|
61 |
+
### Large Verifier System
|
62 |
+
- **Patient Simulator**: Virtual patient system based on real clinical cases
|
63 |
+
- **Multi-Dimensional Verification**: 8 dimensions including medical accuracy, response completeness, and follow-up awareness
|
64 |
+
- **Dynamic Scoring**: Real-time generation of adaptive evaluation criteria for complex clinical scenarios
|
65 |
+
### Medical Domain Adaptation
|
66 |
+
- **Mid-Training**: Medical knowledge injection while preserving general capabilities
|
67 |
+
- **Reinforcement Learning**: Multi-stage RL strategy optimization
|
68 |
+
- **General-Specialized Balance**: Carefully balanced medical, general, and mathematical composite training data
|
69 |
|
70 |
+
## ⚙️ Quick Start
|
|
|
|
|
|
|
71 |
|
72 |
+
```python
|
73 |
+
# 1. load model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
75 |
model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan-M2-32B", trust_remote_code=True)
|
76 |
+
tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan-M2-32B")
|
77 |
+
# 2. Input prompt text
|
78 |
+
prompt = "Got a big swelling after a bug bite. Need help reducing it."
|
79 |
+
# 3. Encode the input text for the model
|
80 |
+
messages = [
|
81 |
+
{"role": "user", "content": prompt}
|
82 |
+
]
|
83 |
+
text = tokenizer.apply_chat_template(
|
84 |
+
messages,
|
85 |
+
tokenize=False,
|
86 |
+
add_generation_prompt=True,
|
87 |
+
thinking_mode='on' # on/off/auto
|
88 |
+
)
|
89 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
90 |
+
# 4. Generate text
|
91 |
+
generated_ids = model.generate(
|
92 |
+
**model_inputs,
|
93 |
+
max_new_tokens=4096
|
94 |
+
)
|
95 |
+
output_ids = [
|
96 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
97 |
+
][0].tolist()
|
98 |
+
# 5. parsing thinking content
|
99 |
+
try:
|
100 |
+
# rindex finding 151668 (</think>)
|
101 |
+
index = len(output_ids) - output_ids[::-1].index(151668)
|
102 |
+
except ValueError:
|
103 |
+
index = 0
|
104 |
+
|
105 |
+
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
|
106 |
+
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
|
107 |
+
|
108 |
+
print("thinking content:", thinking_content)
|
109 |
+
print("content:", content)
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
```
|
112 |
|
113 |
+
For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.9.0` or to create an OpenAI-compatible API endpoint:
|
114 |
+
- SGLang:
|
115 |
+
```shell
|
116 |
+
python -m sglang.launch_server --model-path baichuan-inc/Baichuan-M2-32B --reasoning-parser qwen3
|
117 |
+
```
|
118 |
+
- vLLM:
|
119 |
+
```shell
|
120 |
+
vllm serve baichuan-inc/Baichuan-M2-32B --reasoning-parser qwen3
|
121 |
+
```
|
122 |
|
123 |
+
## MTP inference with SGLang
|
|
|
|
|
124 |
|
125 |
+
1. Replace the qwen2.py file in the sglang installation directory with draft/qwen2.py.
|
126 |
+
2. Launch sglang:
|
127 |
+
```
|
128 |
+
python3 -m sglang.launch_server \
|
129 |
+
--model Baichuan-M2-32B \
|
130 |
+
--speculative-algorithm EAGLE3 \
|
131 |
+
--speculative-draft-model-path Baichuan-M2-32B/draft \
|
132 |
+
--speculative-num-steps 6 \
|
133 |
+
--speculative-eagle-topk 10 \
|
134 |
+
--speculative-num-draft-tokens 32 \
|
135 |
+
--mem-fraction 0.9 \
|
136 |
+
--cuda-graph-max-bs 2 \
|
137 |
+
--reasoning-parser qwen3 \
|
138 |
+
--dtype bfloat16
|
139 |
+
```
|
140 |
|
141 |
+
## ⚠️ Usage Notices
|
142 |
+
1. **Medical Disclaimer**: For research and reference only; cannot replace professional medical diagnosis or treatment
|
143 |
+
2. **Intended Use Cases**: Medical education, health consultation, clinical decision support
|
144 |
+
3. **Safe Use**: Recommended under guidance of medical professionals
|
145 |
|
146 |
+
## 📄 License
|
147 |
+
Licensed under the [Apache License 2.0](LICENSE). Research and commercial use permitted.
|
148 |
|
149 |
+
## 🤝 Acknowledgements
|
150 |
+
- Base Model: Qwen2.5-32B
|
151 |
+
- Training Framework: verl
|
152 |
+
- Inference Engines: vLLM, SGLang
|
153 |
+
- Quantization: AutoRound, GPTQ
|
154 |
+
Thank you to the open-source community. We commit to continuous contribution and advancement of healthcare AI.
|
155 |
|
156 |
+
## 📞 Contact Us
|
157 |
+
- Resources: [BaiChuan AI Website](https://www.baichuan-ai.com)
|
158 |
+
- Technical Support: [GitHub](https://github.com/baichuan-inc)
|
159 |
|
160 |
---
|
|
|
161 |
<div align="center">
|
162 |
|
163 |
+
**Empowering Healthcare with AI, Making Health Accessible to All**
|
164 |
+
|
165 |
+
</div>
|
166 |
|
|
draft/qwen2.py
ADDED
@@ -0,0 +1,641 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-2024 SGLang Team
|
2 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
3 |
+
# you may not use this file except in compliance with the License.
|
4 |
+
# You may obtain a copy of the License at
|
5 |
+
#
|
6 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
7 |
+
#
|
8 |
+
# Unless required by applicable law or agreed to in writing, software
|
9 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
10 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
11 |
+
# See the License for the specific language governing permissions and
|
12 |
+
# limitations under the License.
|
13 |
+
# ==============================================================================
|
14 |
+
|
15 |
+
# Adapted from llama2.py
|
16 |
+
# Modify details for the adaptation of Qwen2 model.
|
17 |
+
"""Inference-only Qwen2 model compatible with HuggingFace weights."""
|
18 |
+
import logging
|
19 |
+
from typing import Any, Dict, Iterable, Optional, Tuple, Union, List
|
20 |
+
|
21 |
+
import torch
|
22 |
+
from torch import nn
|
23 |
+
|
24 |
+
from sglang.srt.distributed import (
|
25 |
+
get_pp_group,
|
26 |
+
get_tensor_model_parallel_rank,
|
27 |
+
get_tensor_model_parallel_world_size,
|
28 |
+
)
|
29 |
+
from sglang.srt.layers.activation import SiluAndMul
|
30 |
+
from sglang.srt.layers.layernorm import RMSNorm
|
31 |
+
from sglang.srt.layers.linear import (
|
32 |
+
MergedColumnParallelLinear,
|
33 |
+
QKVParallelLinear,
|
34 |
+
RowParallelLinear,
|
35 |
+
)
|
36 |
+
from sglang.srt.layers.logits_processor import LogitsProcessor
|
37 |
+
from sglang.srt.layers.pooler import Pooler, PoolingType
|
38 |
+
from sglang.srt.layers.quantization.base_config import QuantizationConfig
|
39 |
+
from sglang.srt.layers.radix_attention import RadixAttention
|
40 |
+
from sglang.srt.layers.rotary_embedding import get_rope
|
41 |
+
from sglang.srt.layers.utils import PPMissingLayer, get_layer_id
|
42 |
+
from sglang.srt.layers.vocab_parallel_embedding import (
|
43 |
+
ParallelLMHead,
|
44 |
+
VocabParallelEmbedding,
|
45 |
+
)
|
46 |
+
from sglang.srt.managers.schedule_batch import global_server_args_dict
|
47 |
+
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, PPProxyTensors
|
48 |
+
from sglang.srt.model_loader.weight_utils import (
|
49 |
+
default_weight_loader,
|
50 |
+
kv_cache_scales_loader,
|
51 |
+
)
|
52 |
+
from sglang.srt.utils import add_prefix, make_layers
|
53 |
+
|
54 |
+
Qwen2Config = None
|
55 |
+
|
56 |
+
|
57 |
+
logger = logging.getLogger(__name__)
|
58 |
+
|
59 |
+
|
60 |
+
class Qwen2MLP(nn.Module):
|
61 |
+
def __init__(
|
62 |
+
self,
|
63 |
+
hidden_size: int,
|
64 |
+
intermediate_size: int,
|
65 |
+
hidden_act: str,
|
66 |
+
quant_config: Optional[QuantizationConfig] = None,
|
67 |
+
prefix: str = "",
|
68 |
+
) -> None:
|
69 |
+
super().__init__()
|
70 |
+
self.gate_up_proj = MergedColumnParallelLinear(
|
71 |
+
hidden_size,
|
72 |
+
[intermediate_size] * 2,
|
73 |
+
bias=False,
|
74 |
+
quant_config=quant_config,
|
75 |
+
prefix=add_prefix("gate_up_proj", prefix),
|
76 |
+
)
|
77 |
+
self.down_proj = RowParallelLinear(
|
78 |
+
intermediate_size,
|
79 |
+
hidden_size,
|
80 |
+
bias=False,
|
81 |
+
quant_config=quant_config,
|
82 |
+
prefix=add_prefix("down_proj", prefix),
|
83 |
+
)
|
84 |
+
if hidden_act != "silu":
|
85 |
+
raise ValueError(
|
86 |
+
f"Unsupported activation: {hidden_act}. "
|
87 |
+
"Only silu is supported for now."
|
88 |
+
)
|
89 |
+
self.act_fn = SiluAndMul()
|
90 |
+
|
91 |
+
def forward(self, x):
|
92 |
+
gate_up, _ = self.gate_up_proj(x)
|
93 |
+
x = self.act_fn(gate_up)
|
94 |
+
x, _ = self.down_proj(x)
|
95 |
+
return x
|
96 |
+
|
97 |
+
|
98 |
+
class Qwen2Attention(nn.Module):
|
99 |
+
def __init__(
|
100 |
+
self,
|
101 |
+
hidden_size: int,
|
102 |
+
num_heads: int,
|
103 |
+
num_kv_heads: int,
|
104 |
+
head_dim: Optional[int] = None,
|
105 |
+
layer_id: int = 0,
|
106 |
+
rope_theta: float = 1000000,
|
107 |
+
rope_scaling: Optional[Dict[str, Any]] = None,
|
108 |
+
max_position_embeddings: int = 32768,
|
109 |
+
quant_config: Optional[QuantizationConfig] = None,
|
110 |
+
dual_chunk_attention_config: Optional[dict[str, Any]] = None,
|
111 |
+
prefix: str = "",
|
112 |
+
) -> None:
|
113 |
+
super().__init__()
|
114 |
+
self.hidden_size = hidden_size
|
115 |
+
tp_size = get_tensor_model_parallel_world_size()
|
116 |
+
self.total_num_heads = num_heads
|
117 |
+
assert self.total_num_heads % tp_size == 0
|
118 |
+
self.num_heads = self.total_num_heads // tp_size
|
119 |
+
self.total_num_kv_heads = num_kv_heads
|
120 |
+
if self.total_num_kv_heads >= tp_size:
|
121 |
+
# Number of KV heads is greater than TP size, so we partition
|
122 |
+
# the KV heads across multiple tensor parallel GPUs.
|
123 |
+
assert self.total_num_kv_heads % tp_size == 0
|
124 |
+
else:
|
125 |
+
# Number of KV heads is less than TP size, so we replicate
|
126 |
+
# the KV heads across multiple tensor parallel GPUs.
|
127 |
+
assert tp_size % self.total_num_kv_heads == 0
|
128 |
+
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
129 |
+
if head_dim is not None:
|
130 |
+
self.head_dim = head_dim
|
131 |
+
else:
|
132 |
+
self.head_dim = hidden_size // self.total_num_heads
|
133 |
+
self.q_size = self.num_heads * self.head_dim
|
134 |
+
self.kv_size = self.num_kv_heads * self.head_dim
|
135 |
+
self.scaling = self.head_dim**-0.5
|
136 |
+
self.rope_theta = rope_theta
|
137 |
+
self.max_position_embeddings = max_position_embeddings
|
138 |
+
|
139 |
+
self.qkv_proj = QKVParallelLinear(
|
140 |
+
hidden_size,
|
141 |
+
self.head_dim,
|
142 |
+
self.total_num_heads,
|
143 |
+
self.total_num_kv_heads,
|
144 |
+
bias=True,
|
145 |
+
quant_config=quant_config,
|
146 |
+
prefix=add_prefix("qkv_proj", prefix),
|
147 |
+
)
|
148 |
+
self.o_proj = RowParallelLinear(
|
149 |
+
self.total_num_heads * self.head_dim,
|
150 |
+
hidden_size,
|
151 |
+
bias=False,
|
152 |
+
quant_config=quant_config,
|
153 |
+
prefix=add_prefix("o_proj", prefix),
|
154 |
+
)
|
155 |
+
|
156 |
+
self.rotary_emb = get_rope(
|
157 |
+
self.head_dim,
|
158 |
+
rotary_dim=self.head_dim,
|
159 |
+
max_position=max_position_embeddings,
|
160 |
+
base=rope_theta,
|
161 |
+
rope_scaling=rope_scaling,
|
162 |
+
dual_chunk_attention_config=dual_chunk_attention_config,
|
163 |
+
)
|
164 |
+
self.attn = RadixAttention(
|
165 |
+
self.num_heads,
|
166 |
+
self.head_dim,
|
167 |
+
self.scaling,
|
168 |
+
num_kv_heads=self.num_kv_heads,
|
169 |
+
layer_id=layer_id,
|
170 |
+
quant_config=quant_config,
|
171 |
+
prefix=add_prefix("attn", prefix),
|
172 |
+
)
|
173 |
+
|
174 |
+
def forward(
|
175 |
+
self,
|
176 |
+
positions: torch.Tensor,
|
177 |
+
hidden_states: torch.Tensor,
|
178 |
+
forward_batch: ForwardBatch,
|
179 |
+
) -> torch.Tensor:
|
180 |
+
qkv, _ = self.qkv_proj(hidden_states)
|
181 |
+
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
182 |
+
q, k = self.rotary_emb(positions, q, k)
|
183 |
+
attn_output = self.attn(q, k, v, forward_batch)
|
184 |
+
output, _ = self.o_proj(attn_output)
|
185 |
+
return output
|
186 |
+
|
187 |
+
|
188 |
+
class Qwen2DecoderLayer(nn.Module):
|
189 |
+
def __init__(
|
190 |
+
self,
|
191 |
+
config: Qwen2Config,
|
192 |
+
layer_id: int = 0,
|
193 |
+
quant_config: Optional[QuantizationConfig] = None,
|
194 |
+
prefix: str = "",
|
195 |
+
alt_stream: Optional[torch.cuda.Stream] = None,
|
196 |
+
) -> None:
|
197 |
+
super().__init__()
|
198 |
+
self.hidden_size = config.hidden_size
|
199 |
+
rope_theta = getattr(config, "rope_theta", 1000000)
|
200 |
+
rope_scaling = getattr(config, "rope_scaling", None)
|
201 |
+
max_position_embeddings = getattr(config, "max_position_embeddings", 32768)
|
202 |
+
head_dim = getattr(config, "head_dim", None)
|
203 |
+
dual_chunk_attention_config = getattr(
|
204 |
+
config, "dual_chunk_attention_config", None
|
205 |
+
)
|
206 |
+
self.self_attn = Qwen2Attention(
|
207 |
+
hidden_size=self.hidden_size,
|
208 |
+
num_heads=config.num_attention_heads,
|
209 |
+
num_kv_heads=config.num_key_value_heads,
|
210 |
+
head_dim=head_dim,
|
211 |
+
layer_id=layer_id,
|
212 |
+
rope_theta=rope_theta,
|
213 |
+
rope_scaling=rope_scaling,
|
214 |
+
max_position_embeddings=max_position_embeddings,
|
215 |
+
quant_config=quant_config,
|
216 |
+
dual_chunk_attention_config=dual_chunk_attention_config,
|
217 |
+
prefix=add_prefix("self_attn", prefix),
|
218 |
+
)
|
219 |
+
self.mlp = Qwen2MLP(
|
220 |
+
hidden_size=self.hidden_size,
|
221 |
+
intermediate_size=config.intermediate_size,
|
222 |
+
hidden_act=config.hidden_act,
|
223 |
+
quant_config=quant_config,
|
224 |
+
prefix=add_prefix("mlp", prefix),
|
225 |
+
)
|
226 |
+
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
227 |
+
self.post_attention_layernorm = RMSNorm(
|
228 |
+
config.hidden_size, eps=config.rms_norm_eps
|
229 |
+
)
|
230 |
+
|
231 |
+
def forward(
|
232 |
+
self,
|
233 |
+
positions: torch.Tensor,
|
234 |
+
hidden_states: torch.Tensor,
|
235 |
+
forward_batch: ForwardBatch,
|
236 |
+
residual: Optional[torch.Tensor],
|
237 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
238 |
+
# Self Attention
|
239 |
+
if residual is None:
|
240 |
+
residual = hidden_states
|
241 |
+
hidden_states = self.input_layernorm(hidden_states)
|
242 |
+
else:
|
243 |
+
hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
244 |
+
hidden_states = self.self_attn(
|
245 |
+
positions=positions,
|
246 |
+
hidden_states=hidden_states,
|
247 |
+
forward_batch=forward_batch,
|
248 |
+
)
|
249 |
+
|
250 |
+
# Fully Connected
|
251 |
+
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
|
252 |
+
hidden_states = self.mlp(hidden_states)
|
253 |
+
return hidden_states, residual
|
254 |
+
|
255 |
+
|
256 |
+
class Qwen2Model(nn.Module):
|
257 |
+
def __init__(
|
258 |
+
self,
|
259 |
+
config: Qwen2Config,
|
260 |
+
quant_config: Optional[QuantizationConfig] = None,
|
261 |
+
prefix: str = "",
|
262 |
+
decoder_layer_type: type[nn.Module] = Qwen2DecoderLayer,
|
263 |
+
alt_stream: Optional[torch.cuda.Stream] = None,
|
264 |
+
) -> None:
|
265 |
+
super().__init__()
|
266 |
+
self.config = config
|
267 |
+
self.padding_idx = config.pad_token_id
|
268 |
+
self.vocab_size = config.vocab_size
|
269 |
+
self.pp_group = get_pp_group()
|
270 |
+
|
271 |
+
if self.pp_group.is_first_rank:
|
272 |
+
self.embed_tokens = VocabParallelEmbedding(
|
273 |
+
config.vocab_size,
|
274 |
+
config.hidden_size,
|
275 |
+
quant_config=quant_config,
|
276 |
+
enable_tp=not global_server_args_dict["enable_dp_attention"],
|
277 |
+
prefix=add_prefix("embed_tokens", prefix),
|
278 |
+
)
|
279 |
+
else:
|
280 |
+
self.embed_tokens = PPMissingLayer()
|
281 |
+
|
282 |
+
# Use the provided decoder layer type or default to Qwen2DecoderLayer
|
283 |
+
decoder_layer_type = decoder_layer_type or Qwen2DecoderLayer
|
284 |
+
self.layers, self.start_layer, self.end_layer = make_layers(
|
285 |
+
config.num_hidden_layers,
|
286 |
+
lambda idx, prefix: decoder_layer_type(
|
287 |
+
layer_id=idx,
|
288 |
+
config=config,
|
289 |
+
quant_config=quant_config,
|
290 |
+
prefix=prefix,
|
291 |
+
alt_stream=alt_stream,
|
292 |
+
),
|
293 |
+
pp_rank=self.pp_group.rank_in_group,
|
294 |
+
pp_size=self.pp_group.world_size,
|
295 |
+
prefix=add_prefix("layers", prefix),
|
296 |
+
)
|
297 |
+
if self.pp_group.is_last_rank:
|
298 |
+
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
299 |
+
else:
|
300 |
+
self.norm = PPMissingLayer(return_tuple=True)
|
301 |
+
|
302 |
+
# For EAGLE3 support
|
303 |
+
self.layers_to_capture = []
|
304 |
+
|
305 |
+
def get_input_embedding(self, input_ids: torch.Tensor) -> torch.Tensor:
|
306 |
+
if hasattr(self.config, "scale_emb"):
|
307 |
+
return self.get_input_embeddings()(input_ids) * self.config.scale_emb
|
308 |
+
else:
|
309 |
+
return self.get_input_embeddings()(input_ids)
|
310 |
+
|
311 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
312 |
+
return self.embed_tokens
|
313 |
+
|
314 |
+
def forward(
|
315 |
+
self,
|
316 |
+
input_ids: torch.Tensor,
|
317 |
+
positions: torch.Tensor,
|
318 |
+
forward_batch: ForwardBatch,
|
319 |
+
input_embeds: torch.Tensor = None,
|
320 |
+
pp_proxy_tensors: Optional[PPProxyTensors] = None,
|
321 |
+
) -> Union[torch.Tensor, PPProxyTensors]:
|
322 |
+
if self.pp_group.is_first_rank:
|
323 |
+
if input_embeds is None:
|
324 |
+
hidden_states = self.embed_tokens(input_ids)
|
325 |
+
else:
|
326 |
+
hidden_states = input_embeds
|
327 |
+
residual = None
|
328 |
+
else:
|
329 |
+
assert pp_proxy_tensors is not None
|
330 |
+
hidden_states = pp_proxy_tensors["hidden_states"]
|
331 |
+
residual = pp_proxy_tensors["residual"]
|
332 |
+
|
333 |
+
aux_hidden_states = []
|
334 |
+
for i in range(self.start_layer, self.end_layer):
|
335 |
+
if i in self.layers_to_capture:
|
336 |
+
aux_hidden_states.append(
|
337 |
+
hidden_states + residual if residual is not None else hidden_states
|
338 |
+
)
|
339 |
+
layer = self.layers[i]
|
340 |
+
hidden_states, residual = layer(
|
341 |
+
positions,
|
342 |
+
hidden_states,
|
343 |
+
forward_batch,
|
344 |
+
residual,
|
345 |
+
)
|
346 |
+
if not self.pp_group.is_last_rank:
|
347 |
+
return PPProxyTensors(
|
348 |
+
{
|
349 |
+
"hidden_states": hidden_states,
|
350 |
+
"residual": residual,
|
351 |
+
}
|
352 |
+
)
|
353 |
+
else:
|
354 |
+
if hidden_states.shape[0] != 0:
|
355 |
+
if residual is None:
|
356 |
+
hidden_states = self.norm(hidden_states)
|
357 |
+
else:
|
358 |
+
hidden_states, _ = self.norm(hidden_states, residual)
|
359 |
+
|
360 |
+
if len(aux_hidden_states) == 0:
|
361 |
+
return hidden_states
|
362 |
+
|
363 |
+
return hidden_states, aux_hidden_states
|
364 |
+
|
365 |
+
# If this function is called, it should always initialize KV cache scale
|
366 |
+
# factors (or else raise an exception). Thus, handled exceptions should
|
367 |
+
# make sure to leave KV cache scale factors in a known good (dummy) state
|
368 |
+
def load_kv_cache_scales(self, quantization_param_path: str) -> None:
|
369 |
+
tp_size = get_tensor_model_parallel_world_size()
|
370 |
+
tp_rank = get_tensor_model_parallel_rank()
|
371 |
+
for layer_idx, scaling_factor in kv_cache_scales_loader(
|
372 |
+
quantization_param_path,
|
373 |
+
tp_rank,
|
374 |
+
tp_size,
|
375 |
+
self.config.num_hidden_layers,
|
376 |
+
self.config.__class__.model_type,
|
377 |
+
):
|
378 |
+
if not isinstance(self.layers[layer_idx], nn.Identity):
|
379 |
+
layer_self_attn = self.layers[layer_idx].self_attn
|
380 |
+
if hasattr(layer_self_attn.attn, "k_scale"):
|
381 |
+
layer_self_attn.attn.k_scale = scaling_factor
|
382 |
+
layer_self_attn.attn.v_scale = scaling_factor
|
383 |
+
else:
|
384 |
+
raise RuntimeError(
|
385 |
+
"Self attention has no KV cache scaling " "factor attribute!"
|
386 |
+
)
|
387 |
+
|
388 |
+
|
389 |
+
class Qwen2ForCausalLM(nn.Module):
|
390 |
+
# BitandBytes specific attributes
|
391 |
+
default_bitsandbytes_target_modules = [
|
392 |
+
".gate_proj.",
|
393 |
+
".down_proj.",
|
394 |
+
".up_proj.",
|
395 |
+
".q_proj.",
|
396 |
+
".k_proj.",
|
397 |
+
".v_proj.",
|
398 |
+
".o_proj.",
|
399 |
+
]
|
400 |
+
bitsandbytes_stacked_params_mapping = {
|
401 |
+
# shard_name, weight_name, index
|
402 |
+
"q_proj": ("qkv_proj", 0),
|
403 |
+
"k_proj": ("qkv_proj", 1),
|
404 |
+
"v_proj": ("qkv_proj", 2),
|
405 |
+
"gate_proj": ("gate_up_proj", 0),
|
406 |
+
"up_proj": ("gate_up_proj", 1),
|
407 |
+
}
|
408 |
+
|
409 |
+
def __init__(
|
410 |
+
self,
|
411 |
+
config: Qwen2Config,
|
412 |
+
quant_config: Optional[QuantizationConfig] = None,
|
413 |
+
prefix: str = "",
|
414 |
+
) -> None:
|
415 |
+
super().__init__()
|
416 |
+
self.pp_group = get_pp_group()
|
417 |
+
self.config = config
|
418 |
+
self.quant_config = quant_config
|
419 |
+
self.model = Qwen2Model(
|
420 |
+
config, quant_config=quant_config, prefix=add_prefix("model", prefix)
|
421 |
+
)
|
422 |
+
self.capture_aux_hidden_states = False
|
423 |
+
|
424 |
+
# handle the lm head on different pp ranks
|
425 |
+
if self.pp_group.is_last_rank:
|
426 |
+
if self.pp_group.world_size == 1 and config.tie_word_embeddings:
|
427 |
+
self.lm_head = self.model.embed_tokens
|
428 |
+
else:
|
429 |
+
self.lm_head = ParallelLMHead(
|
430 |
+
config.vocab_size,
|
431 |
+
config.hidden_size,
|
432 |
+
quant_config=quant_config,
|
433 |
+
prefix=add_prefix("lm_head", prefix),
|
434 |
+
)
|
435 |
+
else:
|
436 |
+
# ranks other than the last rank will have a placeholder layer
|
437 |
+
self.lm_head = PPMissingLayer()
|
438 |
+
|
439 |
+
# perform weight tying for PP
|
440 |
+
if self.pp_group.world_size > 1 and config.tie_word_embeddings:
|
441 |
+
if self.pp_group.is_first_rank:
|
442 |
+
self.pp_group.send(
|
443 |
+
self.model.embed_tokens.weight, dst=self.pp_group.last_rank
|
444 |
+
)
|
445 |
+
else:
|
446 |
+
emb_token_weight = self.pp_group.recv(
|
447 |
+
size=(config.vocab_size, config.hidden_size),
|
448 |
+
dtype=next(self.model.parameters()).dtype,
|
449 |
+
src=self.pp_group.first_rank,
|
450 |
+
)
|
451 |
+
self.lm_head.weight.copy_(emb_token_weight)
|
452 |
+
|
453 |
+
self.logits_processor = LogitsProcessor(config)
|
454 |
+
self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
|
455 |
+
|
456 |
+
def get_input_embedding(self, input_ids: torch.Tensor) -> torch.Tensor:
|
457 |
+
return self.model.get_input_embedding(input_ids)
|
458 |
+
|
459 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
460 |
+
return self.model.embed_tokens
|
461 |
+
|
462 |
+
@torch.no_grad()
|
463 |
+
def forward(
|
464 |
+
self,
|
465 |
+
input_ids: torch.Tensor,
|
466 |
+
positions: torch.Tensor,
|
467 |
+
forward_batch: ForwardBatch,
|
468 |
+
input_embeds: torch.Tensor = None,
|
469 |
+
get_embedding: bool = False,
|
470 |
+
pp_proxy_tensors: Optional[PPProxyTensors] = None,
|
471 |
+
) -> torch.Tensor:
|
472 |
+
hidden_states = self.model(
|
473 |
+
input_ids,
|
474 |
+
positions,
|
475 |
+
forward_batch,
|
476 |
+
input_embeds,
|
477 |
+
pp_proxy_tensors=pp_proxy_tensors,
|
478 |
+
)
|
479 |
+
aux_hidden_states = None
|
480 |
+
if self.capture_aux_hidden_states:
|
481 |
+
hidden_states, aux_hidden_states = hidden_states
|
482 |
+
|
483 |
+
if self.pp_group.is_last_rank:
|
484 |
+
if not get_embedding:
|
485 |
+
return self.logits_processor(
|
486 |
+
input_ids, hidden_states, self.lm_head, forward_batch, aux_hidden_states
|
487 |
+
)
|
488 |
+
else:
|
489 |
+
return self.pooler(hidden_states, forward_batch)
|
490 |
+
else:
|
491 |
+
return hidden_states
|
492 |
+
|
493 |
+
@torch.no_grad()
|
494 |
+
def forward_split_prefill(
|
495 |
+
self,
|
496 |
+
input_ids: torch.Tensor,
|
497 |
+
positions: torch.Tensor,
|
498 |
+
forward_batch: ForwardBatch,
|
499 |
+
split_interval: Tuple[int, int], # [start, end) 0-based
|
500 |
+
input_embeds: torch.Tensor = None,
|
501 |
+
):
|
502 |
+
start, end = split_interval
|
503 |
+
# embed
|
504 |
+
if start == 0:
|
505 |
+
if input_embeds is None:
|
506 |
+
forward_batch.hidden_states = self.model.embed_tokens(input_ids)
|
507 |
+
else:
|
508 |
+
forward_batch.hidden_states = input_embeds
|
509 |
+
# decoder layer
|
510 |
+
for i in range(start, end):
|
511 |
+
layer = self.model.layers[i]
|
512 |
+
forward_batch.hidden_states, forward_batch.residual = layer(
|
513 |
+
positions,
|
514 |
+
forward_batch.hidden_states,
|
515 |
+
forward_batch,
|
516 |
+
forward_batch.residual,
|
517 |
+
)
|
518 |
+
|
519 |
+
if end == self.model.config.num_hidden_layers:
|
520 |
+
# norm
|
521 |
+
hidden_states, _ = self.model.norm(
|
522 |
+
forward_batch.hidden_states, forward_batch.residual
|
523 |
+
)
|
524 |
+
forward_batch.hidden_states = hidden_states
|
525 |
+
# logits process
|
526 |
+
result = self.logits_processor(
|
527 |
+
input_ids, forward_batch.hidden_states, self.lm_head, forward_batch
|
528 |
+
)
|
529 |
+
else:
|
530 |
+
result = None
|
531 |
+
|
532 |
+
return result
|
533 |
+
|
534 |
+
@property
|
535 |
+
def start_layer(self):
|
536 |
+
return self.model.start_layer
|
537 |
+
|
538 |
+
@property
|
539 |
+
def end_layer(self):
|
540 |
+
return self.model.end_layer
|
541 |
+
|
542 |
+
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
543 |
+
stacked_params_mapping = [
|
544 |
+
# (param_name, shard_name, shard_id)
|
545 |
+
("qkv_proj", "q_proj", "q"),
|
546 |
+
("qkv_proj", "k_proj", "k"),
|
547 |
+
("qkv_proj", "v_proj", "v"),
|
548 |
+
("gate_up_proj", "gate_proj", 0),
|
549 |
+
("gate_up_proj", "up_proj", 1),
|
550 |
+
]
|
551 |
+
|
552 |
+
params_dict = dict(self.named_parameters())
|
553 |
+
for name, loaded_weight in weights:
|
554 |
+
layer_id = get_layer_id(name)
|
555 |
+
if (
|
556 |
+
layer_id is not None
|
557 |
+
and hasattr(self.model, "start_layer")
|
558 |
+
and (
|
559 |
+
layer_id < self.model.start_layer
|
560 |
+
or layer_id >= self.model.end_layer
|
561 |
+
)
|
562 |
+
):
|
563 |
+
continue
|
564 |
+
|
565 |
+
if "rotary_emb.inv_freq" in name or "projector" in name:
|
566 |
+
continue
|
567 |
+
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
|
568 |
+
# Models trained using ColossalAI may include these tensors in
|
569 |
+
# the checkpoint. Skip them.
|
570 |
+
continue
|
571 |
+
if self.config.tie_word_embeddings and "lm_head.weight" in name:
|
572 |
+
if self.pp_group.world_size > 1 and self.pp_group.is_last_rank:
|
573 |
+
# Handle pp weight tying here
|
574 |
+
# find the embed_tokens.weight in the weights
|
575 |
+
embed_token_weights = next(
|
576 |
+
filter(lambda x: x[0] == "model.embed_tokens.weight", weights)
|
577 |
+
)[1]
|
578 |
+
loaded_weight = embed_token_weights
|
579 |
+
else:
|
580 |
+
continue
|
581 |
+
if name.startswith("model.vision_tower") and name not in params_dict:
|
582 |
+
continue
|
583 |
+
|
584 |
+
for param_name, weight_name, shard_id in stacked_params_mapping:
|
585 |
+
if weight_name not in name:
|
586 |
+
continue
|
587 |
+
name = name.replace(weight_name, param_name)
|
588 |
+
# Skip loading extra bias for GPTQ models.
|
589 |
+
if name.endswith(".bias") and name not in params_dict:
|
590 |
+
continue
|
591 |
+
if name not in params_dict:
|
592 |
+
continue
|
593 |
+
param = params_dict[name]
|
594 |
+
weight_loader = param.weight_loader
|
595 |
+
weight_loader(param, loaded_weight, shard_id)
|
596 |
+
break
|
597 |
+
else:
|
598 |
+
# Skip loading extra bias for GPTQ models.
|
599 |
+
if name.endswith(".bias") and name not in params_dict:
|
600 |
+
continue
|
601 |
+
|
602 |
+
if name in params_dict.keys():
|
603 |
+
param = params_dict[name]
|
604 |
+
weight_loader = getattr(
|
605 |
+
param, "weight_loader", default_weight_loader
|
606 |
+
)
|
607 |
+
weight_loader(param, loaded_weight)
|
608 |
+
else:
|
609 |
+
logger.warning(f"Parameter {name} not found in params_dict")
|
610 |
+
|
611 |
+
def get_embed_and_head(self):
|
612 |
+
return self.model.embed_tokens.weight, self.lm_head.weight
|
613 |
+
|
614 |
+
def set_embed_and_head(self, embed, head):
|
615 |
+
del self.model.embed_tokens.weight
|
616 |
+
del self.lm_head.weight
|
617 |
+
self.model.embed_tokens.weight = embed
|
618 |
+
self.lm_head.weight = head
|
619 |
+
torch.cuda.empty_cache()
|
620 |
+
torch.cuda.synchronize()
|
621 |
+
|
622 |
+
def load_kv_cache_scales(self, quantization_param_path: str) -> None:
|
623 |
+
self.model.load_kv_cache_scales(quantization_param_path)
|
624 |
+
|
625 |
+
def set_eagle3_layers_to_capture(self, layer_ids: Optional[List[int]] = None):
|
626 |
+
if not self.pp_group.is_last_rank:
|
627 |
+
return
|
628 |
+
|
629 |
+
self.capture_aux_hidden_states = True
|
630 |
+
if layer_ids is None:
|
631 |
+
num_layers = self.config.num_hidden_layers
|
632 |
+
self.model.layers_to_capture = [
|
633 |
+
2,
|
634 |
+
num_layers // 2,
|
635 |
+
num_layers - 3,
|
636 |
+
] # Specific layers for EAGLE3 support
|
637 |
+
else:
|
638 |
+
self.model.layers_to_capture = [val + 1 for val in layer_ids]
|
639 |
+
|
640 |
+
|
641 |
+
EntryClass = Qwen2ForCausalLM
|