benchaffe commited on
Commit
fde8a9e
·
verified ·
1 Parent(s): 802e725

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -6
README.md CHANGED
@@ -12,14 +12,15 @@ metrics:
12
  model-index:
13
  - name: BiomedBERT-AC-LF-Classification
14
  results: []
 
 
 
 
15
  ---
16
 
17
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
- should probably proofread and complete it, then remove this comment. -->
19
-
20
  # BiomedBERT-AC-LF-Classification
21
 
22
- This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext) on an unknown dataset.
23
  It achieves the following results on the evaluation set:
24
  - Loss: 0.2703
25
  - Precision: 0.7821
@@ -27,9 +28,16 @@ It achieves the following results on the evaluation set:
27
  - F1: 0.8231
28
  - Accuracy: 0.9204
29
 
 
 
 
 
 
 
 
30
  ## Model description
31
 
32
- More information needed
33
 
34
  ## Intended uses & limitations
35
 
@@ -68,4 +76,4 @@ The following hyperparameters were used during training:
68
  - Transformers 4.52.4
69
  - Pytorch 2.6.0+cu124
70
  - Datasets 3.6.0
71
- - Tokenizers 0.21.1
 
12
  model-index:
13
  - name: BiomedBERT-AC-LF-Classification
14
  results: []
15
+ datasets:
16
+ - surrey-nlp/PLOD-CW-25
17
+ language:
18
+ - en
19
  ---
20
 
 
 
 
21
  # BiomedBERT-AC-LF-Classification
22
 
23
+ This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext) on the PLOD-CW-25 dataset.
24
  It achieves the following results on the evaluation set:
25
  - Loss: 0.2703
26
  - Precision: 0.7821
 
28
  - F1: 0.8231
29
  - Accuracy: 0.9204
30
 
31
+ It achieves the following results on the test set:
32
+ - Loss: 0.1384
33
+ - Precision: 0.8473
34
+ - Recall: 0.9281
35
+ - F1: 0.8858
36
+ - Accuracy: 0.9529
37
+
38
  ## Model description
39
 
40
+ This model is a fine-tuned model, designed to detect abbreviations and long forms in biomedical text. Abbreviations and long forms are tagged in the BIO format, with the following labels, B-AC, B-LF, I-LF and O.
41
 
42
  ## Intended uses & limitations
43
 
 
76
  - Transformers 4.52.4
77
  - Pytorch 2.6.0+cu124
78
  - Datasets 3.6.0
79
+ - Tokenizers 0.21.1