hassonofer commited on
Commit
96d6a51
·
verified ·
1 Parent(s): 6e8ed41

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -15
README.md CHANGED
@@ -33,17 +33,17 @@ The species list is derived from data available at <https://www.israbirding.com/
33
  import birder
34
  from birder.inference.classification import infer_image
35
 
36
- (net, class_to_idx, signature, rgb_stats) = birder.load_pretrained_model("convnext_v2_tiny_intermediate-il-common", inference=True)
37
 
38
  # Get the image size the model was trained on
39
- size = birder.get_size_from_signature(signature)
40
 
41
  # Create an inference transform
42
- transform = birder.classification_transform(size, rgb_stats)
43
 
44
  image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format
45
  (out, _) = infer_image(net, image, transform)
46
- # out is a NumPy array with shape of (1, num_classes), representing class probabilities.
47
  ```
48
 
49
  ### Image Embeddings
@@ -52,17 +52,17 @@ image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format
52
  import birder
53
  from birder.inference.classification import infer_image
54
 
55
- (net, class_to_idx, signature, rgb_stats) = birder.load_pretrained_model("convnext_v2_tiny_intermediate-il-common", inference=True)
56
 
57
  # Get the image size the model was trained on
58
- size = birder.get_size_from_signature(signature)
59
 
60
  # Create an inference transform
61
- transform = birder.classification_transform(size, rgb_stats)
62
 
63
  image = "path/to/image.jpeg" # or a PIL image
64
  (out, embedding) = infer_image(net, image, transform, return_embedding=True)
65
- # embedding is a NumPy array with shape of (1, embedding_size)
66
  ```
67
 
68
  ### Detection Feature Map
@@ -71,23 +71,23 @@ image = "path/to/image.jpeg" # or a PIL image
71
  from PIL import Image
72
  import birder
73
 
74
- (net, class_to_idx, signature, rgb_stats) = birder.load_pretrained_model("convnext_v2_tiny_intermediate-il-common", inference=True)
75
 
76
  # Get the image size the model was trained on
77
- size = birder.get_size_from_signature(signature)
78
 
79
  # Create an inference transform
80
- transform = birder.classification_transform(size, rgb_stats)
81
 
82
  image = Image.open("path/to/image.jpeg")
83
  features = net.detection_features(transform(image).unsqueeze(0))
84
  # features is a dict (stage name -> torch.Tensor)
85
  print([(k, v.size()) for k, v in features.items()])
86
  # Output example:
87
- # [('stage1', torch.Size([1, 96, 96, 96])),
88
- # ('stage2', torch.Size([1, 192, 48, 48])),
89
- # ('stage3', torch.Size([1, 384, 24, 24])),
90
- # ('stage4', torch.Size([1, 768, 12, 12]))]
91
  ```
92
 
93
  ## Citation
 
33
  import birder
34
  from birder.inference.classification import infer_image
35
 
36
+ (net, model_info) = birder.load_pretrained_model("convnext_v2_tiny_intermediate-il-common", inference=True)
37
 
38
  # Get the image size the model was trained on
39
+ size = birder.get_size_from_signature(model_info.signature)
40
 
41
  # Create an inference transform
42
+ transform = birder.classification_transform(size, model_info.rgb_stats)
43
 
44
  image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format
45
  (out, _) = infer_image(net, image, transform)
46
+ # out is a NumPy array with shape of (1, 371), representing class probabilities.
47
  ```
48
 
49
  ### Image Embeddings
 
52
  import birder
53
  from birder.inference.classification import infer_image
54
 
55
+ (net, model_info) = birder.load_pretrained_model("convnext_v2_tiny_intermediate-il-common", inference=True)
56
 
57
  # Get the image size the model was trained on
58
+ size = birder.get_size_from_signature(model_info.signature)
59
 
60
  # Create an inference transform
61
+ transform = birder.classification_transform(size, model_info.rgb_stats)
62
 
63
  image = "path/to/image.jpeg" # or a PIL image
64
  (out, embedding) = infer_image(net, image, transform, return_embedding=True)
65
+ # embedding is a NumPy array with shape of (1, 768)
66
  ```
67
 
68
  ### Detection Feature Map
 
71
  from PIL import Image
72
  import birder
73
 
74
+ (net, model_info) = birder.load_pretrained_model("convnext_v2_tiny_intermediate-il-common", inference=True)
75
 
76
  # Get the image size the model was trained on
77
+ size = birder.get_size_from_signature(model_info.signature)
78
 
79
  # Create an inference transform
80
+ transform = birder.classification_transform(size, model_info.rgb_stats)
81
 
82
  image = Image.open("path/to/image.jpeg")
83
  features = net.detection_features(transform(image).unsqueeze(0))
84
  # features is a dict (stage name -> torch.Tensor)
85
  print([(k, v.size()) for k, v in features.items()])
86
  # Output example:
87
+ # [('stage1', torch.Size([1, 96, 64, 64])),
88
+ # ('stage2', torch.Size([1, 192, 32, 32])),
89
+ # ('stage3', torch.Size([1, 384, 16, 16])),
90
+ # ('stage4', torch.Size([1, 768, 8, 8]))]
91
  ```
92
 
93
  ## Citation