Image Feature Extraction
Birder
PyTorch
hassonofer commited on
Commit
b282642
·
verified ·
1 Parent(s): fc96fc2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +107 -3
README.md CHANGED
@@ -1,3 +1,107 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - image-feature-extraction
4
+ - birder
5
+ - pytorch
6
+ library_name: birder
7
+ license: apache-2.0
8
+ base_model:
9
+ - facebook/PE-Core-B16-224
10
+ ---
11
+
12
+ # Model Card for rope_i_vit_b16_pn_ap_c1_pe-core
13
+
14
+ A ViT-B16 image encoder from the PE-Core model by Bolya et al., converted to the Birder format for image feature extraction.
15
+ This version retains the original model weights and architecture, with the exception of removing the CLIP projection layer to expose raw image embeddings.
16
+ It is a general-purpose visual backbone.
17
+
18
+ See: <https://huggingface.co/facebook/PE-Core-B16-224> for further details.
19
+
20
+ ## Model Details
21
+
22
+ - **Model Type:** Image classification and detection backbone
23
+ - **Model Stats:**
24
+ - Params (M): 92.9
25
+ - Input image size: 224 x 224
26
+
27
+ - **Papers:**
28
+ - An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale: <https://arxiv.org/abs/2010.11929>
29
+ - Rotary Position Embedding for Vision Transformer: <https://arxiv.org/abs/2403.13298>
30
+ - Perception Encoder: The best visual embeddings are not at the output of the network: <https://arxiv.org/abs/2504.13181>
31
+
32
+ ## Model Usage
33
+
34
+ ### Image Embeddings
35
+
36
+ ```python
37
+ import birder
38
+ from birder.inference.classification import infer_image
39
+
40
+ (net, model_info) = birder.load_pretrained_model("rope_i_vit_b16_pn_ap_c1_pe-core", inference=True)
41
+
42
+ # Get the image size the model was trained on
43
+ size = birder.get_size_from_signature(model_info.signature)
44
+
45
+ # Create an inference transform
46
+ transform = birder.classification_transform(size, model_info.rgb_stats)
47
+
48
+ image = "path/to/image.jpeg" # or a PIL image
49
+ (out, embedding) = infer_image(net, image, transform, return_embedding=True)
50
+ # embedding is a NumPy array with shape of (1, 768)
51
+ ```
52
+
53
+ ### Detection Feature Map
54
+
55
+ ```python
56
+ from PIL import Image
57
+ import birder
58
+
59
+ (net, model_info) = birder.load_pretrained_model("rope_i_vit_b16_pn_ap_c1_pe-core", inference=True)
60
+
61
+ # Get the image size the model was trained on
62
+ size = birder.get_size_from_signature(model_info.signature)
63
+
64
+ # Create an inference transform
65
+ transform = birder.classification_transform(size, model_info.rgb_stats)
66
+
67
+ image = Image.open("path/to/image.jpeg")
68
+ features = net.detection_features(transform(image).unsqueeze(0))
69
+ # features is a dict (stage name -> torch.Tensor)
70
+ print([(k, v.size()) for k, v in features.items()])
71
+ # Output example:
72
+ # [('neck', torch.Size([1, 768, 14, 14]))]
73
+ ```
74
+
75
+ ## Citation
76
+
77
+ ```bibtex
78
+ @misc{dosovitskiy2021imageworth16x16words,
79
+ title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale},
80
+ author={Alexey Dosovitskiy and Lucas Beyer and Alexander Kolesnikov and Dirk Weissenborn and Xiaohua Zhai and Thomas Unterthiner and Mostafa Dehghani and Matthias Minderer and Georg Heigold and Sylvain Gelly and Jakob Uszkoreit and Neil Houlsby},
81
+ year={2021},
82
+ eprint={2010.11929},
83
+ archivePrefix={arXiv},
84
+ primaryClass={cs.CV},
85
+ url={https://arxiv.org/abs/2010.11929},
86
+ }
87
+
88
+ @misc{heo2024rotarypositionembeddingvision,
89
+ title={Rotary Position Embedding for Vision Transformer},
90
+ author={Byeongho Heo and Song Park and Dongyoon Han and Sangdoo Yun},
91
+ year={2024},
92
+ eprint={2403.13298},
93
+ archivePrefix={arXiv},
94
+ primaryClass={cs.CV},
95
+ url={https://arxiv.org/abs/2403.13298},
96
+ }
97
+
98
+ @misc{bolya2025perceptionencoderbestvisual,
99
+ title={Perception Encoder: The best visual embeddings are not at the output of the network},
100
+ author={Daniel Bolya and Po-Yao Huang and Peize Sun and Jang Hyun Cho and Andrea Madotto and Chen Wei and Tengyu Ma and Jiale Zhi and Jathushan Rajasegaran and Hanoona Rasheed and Junke Wang and Marco Monteiro and Hu Xu and Shiyu Dong and Nikhila Ravi and Daniel Li and Piotr Dollár and Christoph Feichtenhofer},
101
+ year={2025},
102
+ eprint={2504.13181},
103
+ archivePrefix={arXiv},
104
+ primaryClass={cs.CV},
105
+ url={https://arxiv.org/abs/2504.13181},
106
+ }
107
+ ```