Stage-1 commit: Agent trained for 3500 episodes
Browse files- README.md +9 -4
- atari_breakout_v0-episode-0.mp4 +0 -0
- main.py +167 -0
- model.py +40 -0
- atari_breakout_v0.pt → models/atari_breakout_v0.pt +0 -0
- utils.py +40 -0
README.md
CHANGED
@@ -1,8 +1,13 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
language:
|
4 |
-
- en
|
5 |
tags:
|
6 |
-
- reinforcement learning
|
7 |
-
- games
|
8 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
language:
|
4 |
+
- en
|
5 |
tags:
|
6 |
+
- reinforcement learning
|
7 |
+
- games
|
8 |
+
---
|
9 |
+
|
10 |
+
# Deep Q-Learning based Agent for Atari Breakout
|
11 |
+
|
12 |
+
The agent showcased in this space is trained using the Deep Q-Learning algorithm.
|
13 |
+
The agent was trained for $3500$ episodes with a learning rate of $0.00001$ and an epsilon value that decreased linearly over time.
|
atari_breakout_v0-episode-0.mp4
ADDED
Binary file (79.2 kB). View file
|
|
main.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Main script to run the Atari Breakout-v0 game.
|
3 |
+
The DQN algorithm was used to train the agent.
|
4 |
+
|
5 |
+
@author: bvk1ng (Adityam Ghosh)
|
6 |
+
Date: 12/28/2023
|
7 |
+
"""
|
8 |
+
|
9 |
+
from typing import List, Dict, Any, Callable, Tuple, Union
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import gymnasium as gym
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import torch.nn.functional as F
|
16 |
+
import albumentations as A
|
17 |
+
import cv2
|
18 |
+
import os
|
19 |
+
import argparse
|
20 |
+
|
21 |
+
|
22 |
+
from model import CNNModel
|
23 |
+
from utils import play_atari_game, gym
|
24 |
+
from gymnasium.wrappers.record_video import RecordVideo
|
25 |
+
|
26 |
+
|
27 |
+
K = 4
|
28 |
+
IM_SIZE = 84
|
29 |
+
|
30 |
+
|
31 |
+
class ImageTransform:
|
32 |
+
def __init__(self):
|
33 |
+
self.compose = A.Compose(
|
34 |
+
[
|
35 |
+
A.Crop(x_min=0, y_min=34, x_max=160, y_max=200, always_apply=True),
|
36 |
+
A.Resize(
|
37 |
+
height=IM_SIZE,
|
38 |
+
width=IM_SIZE,
|
39 |
+
interpolation=cv2.INTER_NEAREST,
|
40 |
+
always_apply=True,
|
41 |
+
),
|
42 |
+
]
|
43 |
+
)
|
44 |
+
|
45 |
+
def transform(self, img: np.ndarray) -> np.ndarray:
|
46 |
+
gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
47 |
+
img_tf = self.compose(image=gray_img)
|
48 |
+
return img_tf["image"]
|
49 |
+
|
50 |
+
|
51 |
+
class DQN:
|
52 |
+
def __init__(
|
53 |
+
self,
|
54 |
+
K: int,
|
55 |
+
cnn_params: List,
|
56 |
+
fully_connected_params: List,
|
57 |
+
device: str = "cuda",
|
58 |
+
load_path: str = None,
|
59 |
+
):
|
60 |
+
self.K = K
|
61 |
+
self.cnn_model = CNNModel(
|
62 |
+
K=K,
|
63 |
+
cnn_params=cnn_params,
|
64 |
+
fully_connected_params=fully_connected_params,
|
65 |
+
).to(device=device)
|
66 |
+
self.device = device
|
67 |
+
|
68 |
+
self.load(load_path)
|
69 |
+
|
70 |
+
def predict(self, states: np.ndarray) -> torch.Tensor:
|
71 |
+
states = np.transpose(states, (0, 3, 1, 2)) # (N, T, H, W)
|
72 |
+
states = torch.from_numpy(states).float().to(device=self.device)
|
73 |
+
|
74 |
+
states /= 255.0
|
75 |
+
|
76 |
+
return self.cnn_model(states).detach().cpu()
|
77 |
+
|
78 |
+
def load(self, path: str):
|
79 |
+
if path is not None:
|
80 |
+
self.cnn_model.load_state_dict(torch.load(path))
|
81 |
+
|
82 |
+
|
83 |
+
if __name__ == "__main__":
|
84 |
+
parser = argparse.ArgumentParser()
|
85 |
+
|
86 |
+
parser.add_argument(
|
87 |
+
"--model_folder",
|
88 |
+
"-mF",
|
89 |
+
type=str,
|
90 |
+
required=False,
|
91 |
+
default="./models",
|
92 |
+
help="the folder to store the models.",
|
93 |
+
)
|
94 |
+
parser.add_argument(
|
95 |
+
"--model_name",
|
96 |
+
"-mf",
|
97 |
+
type=str,
|
98 |
+
required=False,
|
99 |
+
default="atari_breakout_v0.pt",
|
100 |
+
help="the name of the model to save.",
|
101 |
+
)
|
102 |
+
|
103 |
+
parser.add_argument(
|
104 |
+
"--save_video",
|
105 |
+
"-s",
|
106 |
+
type=int,
|
107 |
+
required=False,
|
108 |
+
default=0,
|
109 |
+
help="whether to save a video of the gameplay or not.",
|
110 |
+
)
|
111 |
+
|
112 |
+
parser.add_argument(
|
113 |
+
"--video_folder",
|
114 |
+
"-V",
|
115 |
+
type=str,
|
116 |
+
required=False,
|
117 |
+
default="./videos",
|
118 |
+
help="where to save the video.",
|
119 |
+
)
|
120 |
+
|
121 |
+
parser.add_argument(
|
122 |
+
"--video_name",
|
123 |
+
"-v",
|
124 |
+
type=str,
|
125 |
+
required=False,
|
126 |
+
default="atari_breakout_v0",
|
127 |
+
help="the name of the video file.",
|
128 |
+
)
|
129 |
+
|
130 |
+
args = parser.parse_args()
|
131 |
+
|
132 |
+
model_folder = args.model_folder
|
133 |
+
model_name = args.model_name
|
134 |
+
save_video = args.save_video
|
135 |
+
video_folder = args.video_folder
|
136 |
+
video_name = args.video_name
|
137 |
+
|
138 |
+
cnn_params = [(32, 8, 4), (64, 4, 2), (64, 3, 1)]
|
139 |
+
fully_connected_params = [512]
|
140 |
+
|
141 |
+
load_path = None
|
142 |
+
|
143 |
+
if os.path.exists(os.path.join(model_folder, model_name)):
|
144 |
+
load_path = os.path.join(model_folder, model_name)
|
145 |
+
|
146 |
+
model = DQN(
|
147 |
+
K=K,
|
148 |
+
cnn_params=cnn_params,
|
149 |
+
fully_connected_params=fully_connected_params,
|
150 |
+
device="cuda",
|
151 |
+
lr=1e-5,
|
152 |
+
load_path=load_path,
|
153 |
+
)
|
154 |
+
|
155 |
+
img_transformer = ImageTransform()
|
156 |
+
|
157 |
+
if save_video:
|
158 |
+
env = gym.make("Breakout-v0", render_mode="rgb_array")
|
159 |
+
env = RecordVideo(env=env, video_folder=video_folder, name_prefix=video_name)
|
160 |
+
|
161 |
+
env.reset()
|
162 |
+
env.start_video_recorder()
|
163 |
+
|
164 |
+
else:
|
165 |
+
env = gym.make("Breakout-v0", render_mode="human")
|
166 |
+
|
167 |
+
play_atari_game(env=env, model=model, img_transform=img_transformer)
|
model.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
@author: bvk1ng (Adityam Ghosh)
|
3 |
+
Date: 12/28/2023
|
4 |
+
|
5 |
+
"""
|
6 |
+
from typing import Any, List, Tuple, Dict, Union, Callable
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
|
12 |
+
|
13 |
+
class CNNModel(nn.Module):
|
14 |
+
def __init__(self, K: int, cnn_params: List, fully_connected_params: List):
|
15 |
+
super().__init__()
|
16 |
+
|
17 |
+
self.network = nn.Sequential()
|
18 |
+
|
19 |
+
for idx, (out_channels, kernel_size, stride) in enumerate(cnn_params):
|
20 |
+
self.network.add_module(
|
21 |
+
f"conv2d_{idx}",
|
22 |
+
nn.LazyConv2d(
|
23 |
+
out_channels=out_channels,
|
24 |
+
kernel_size=kernel_size,
|
25 |
+
stride=stride,
|
26 |
+
),
|
27 |
+
)
|
28 |
+
|
29 |
+
self.network.add_module(f"activation_{idx}", nn.ReLU())
|
30 |
+
|
31 |
+
self.network.add_module("flatten", nn.Flatten())
|
32 |
+
|
33 |
+
for idx, out_feats in enumerate(fully_connected_params):
|
34 |
+
self.network.add_module(f"fc_{idx}", nn.LazyLinear(out_features=out_feats))
|
35 |
+
self.network.add_module(f"fc_activation_{idx}", nn.ReLU())
|
36 |
+
|
37 |
+
self.network.add_module("final_layer", nn.LazyLinear(out_features=K))
|
38 |
+
|
39 |
+
def forward(self, X: torch.Tensor) -> torch.Tensor:
|
40 |
+
return self.network(X)
|
atari_breakout_v0.pt → models/atari_breakout_v0.pt
RENAMED
File without changes
|
utils.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
@author: bvk1ng (Adityam Ghosh)
|
3 |
+
Date: 12/28/2023
|
4 |
+
"""
|
5 |
+
|
6 |
+
from typing import Callable, List, Tuple, Any, Dict, Union
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import gymnasium as gym
|
10 |
+
|
11 |
+
|
12 |
+
def update_state(state: np.ndarray, obs_small: np.ndarray) -> np.ndarray:
|
13 |
+
"""Function to append the recent state into the state variable and remove the oldest using FIFO."""
|
14 |
+
return np.append(state[:, :, 1:], np.expand_dims(obs_small, axis=2), axis=2)
|
15 |
+
|
16 |
+
|
17 |
+
def play_atari_game(env: gym.Env, model: Callable, img_transform: Callable):
|
18 |
+
"""Function to play the atari game."""
|
19 |
+
|
20 |
+
obs, info = env.reset()
|
21 |
+
obs_small = img_transform.transform(obs)
|
22 |
+
state = np.stack([obs_small] * 4, axis=2)
|
23 |
+
|
24 |
+
done, truncated = False, False
|
25 |
+
|
26 |
+
episode_reward = 0
|
27 |
+
|
28 |
+
while not (done or truncated):
|
29 |
+
action = model.predict(np.expand_dims(state, axis=0)).numpy()
|
30 |
+
action = np.argmax(action, axis=1)[0]
|
31 |
+
obs, reward, done, truncated, info = env.step(action)
|
32 |
+
obs_small = img_transform.transform(obs)
|
33 |
+
|
34 |
+
episode_reward += reward
|
35 |
+
|
36 |
+
next_state = update_state(state=state, obs_small=obs_small)
|
37 |
+
|
38 |
+
state = next_state
|
39 |
+
|
40 |
+
print(f"Total reward earned: {episode_reward}")
|