|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Utility methods to be used for training N-gram LM with KenLM in train_kenlm.py |
|
""" |
|
|
|
import json |
|
import os |
|
|
|
import numpy as np |
|
from joblib import Parallel, delayed |
|
from tqdm.auto import tqdm |
|
|
|
|
|
SUPPORTED_MODELS = { |
|
'EncDecCTCModelBPE': 'subword', |
|
'EncDecCTCModel': 'char', |
|
'EncDecRNNTBPEModel': 'subword', |
|
'EncDecRNNTModel': 'char', |
|
} |
|
|
|
|
|
def softmax(x): |
|
e = np.exp(x - np.max(x)) |
|
return e / e.sum(axis=-1).reshape([x.shape[0], 1]) |
|
|
|
|
|
def read_train_file(path, lowercase: bool = False): |
|
lines_read = 0 |
|
text_dataset = [] |
|
|
|
with open(path, 'r', encoding='utf-8') as f: |
|
reader = tqdm(iter(lambda: f.readline(), ''), desc="Read 0 lines", unit=' lines') |
|
for i, line in enumerate(reader): |
|
if path.endswith('.json'): |
|
line = json.loads(line)['text'] |
|
|
|
line = line.replace("\n", "").strip() |
|
if lowercase: |
|
line = line.lower() |
|
|
|
if line: |
|
text_dataset.append(line) |
|
|
|
lines_read += 1 |
|
if lines_read % 100000 == 0: |
|
reader.set_description(f"Read {lines_read} lines") |
|
|
|
return text_dataset |
|
|
|
|
|
def tokenize_str(texts, tokenizer, offset): |
|
tokenized_text = [] |
|
for text in texts: |
|
tok_text = tokenizer.text_to_ids(text) |
|
tok_text = [chr(token + offset) for token in tok_text] |
|
tokenized_text.append(tok_text) |
|
return tokenized_text |
|
|
|
|
|
def tokenize_text(data, tokenizer, path, chunk_size=8192, buffer_size=32, token_offset=100): |
|
dataset_len = len(data) |
|
print( |
|
f"Chunking {dataset_len} rows into {dataset_len / float(chunk_size):0.4f} tasks (each chunk contains {chunk_size} elements)" |
|
) |
|
|
|
current_step = 0 |
|
if os.path.exists(path): |
|
print(f"Deleting previous file : {path}") |
|
os.remove(path) |
|
|
|
with Parallel(n_jobs=-2, verbose=10) as parallel: |
|
while True: |
|
start = current_step * chunk_size |
|
end = min((current_step + buffer_size) * chunk_size, dataset_len) |
|
|
|
tokenized_data = parallel( |
|
delayed(tokenize_str)(data[start : start + chunk_size], tokenizer, token_offset) |
|
for start in range(start, end, chunk_size) |
|
) |
|
|
|
|
|
write_dataset(tokenized_data, path) |
|
current_step += len(tokenized_data) |
|
print(f"Finished writing {len(tokenized_data)} chunks to {path}. Current chunk index = {current_step}") |
|
del tokenized_data |
|
if end >= dataset_len: |
|
break |
|
|
|
|
|
def write_dataset(chunks, path): |
|
basedir = os.path.dirname(path) |
|
|
|
if not os.path.exists(basedir): |
|
os.makedirs(basedir, exist_ok=True) |
|
|
|
with open(path, 'a+', encoding='utf-8') as f: |
|
for chunk_idx in tqdm(range(len(chunks)), desc='Chunk ', total=len(chunks), unit=' chunks'): |
|
for text in chunks[chunk_idx]: |
|
line = ' '.join(text) |
|
f.write(f"{line}\n") |
|
|