|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import time |
|
from argparse import ArgumentParser |
|
|
|
from nemo.collections.asr.parts.utils.vad_utils import generate_overlap_vad_seq, generate_vad_segment_table |
|
from nemo.utils import logging |
|
|
|
""" |
|
Note you can use NeMo/examples/asr/speech_classification/vad_infer.py which includes the functionalities appeared in this function directly. |
|
|
|
You are encouraged to use this script if you want to try overlapped mean/median smoothing filter and postprocessing technique without perform costly NN inference several times. |
|
You can also use this script to write RTTM-like files if you have frame level prediction already. |
|
|
|
This script serves two purposes: |
|
1) gen_overlap_seq: |
|
Generate predictions with overlapping input segments by using the frame level prediction from NeMo/examples/asr/speech_classification/vad_infer.py. |
|
Then a smoothing filter is applied to decide the label for a frame spanned by multiple segments. |
|
|
|
2)gen_seg_table: |
|
Converting frame level prediction to speech/no-speech segment in start and end times format with postprocessing technique. |
|
|
|
Usage: |
|
|
|
python vad_overlap_posterior.py --gen_overlap_seq --gen_seg_table --frame_folder=<FULL PATH OF YOU STORED FRAME LEVEL PREDICTION> --method='median' --overlap=0.875 --num_workers=20 |
|
|
|
You can play with different postprocesing parameters. Here we just show the simpliest condition onset=offset=threshold=0.5 |
|
See more details about postprocesing in function binarization and filtering in NeMo/nemo/collections/asr/parts/utils/vad_utils |
|
|
|
""" |
|
postprocessing_params = {"onset": 0.5, "offset": 0.5} |
|
|
|
if __name__ == '__main__': |
|
parser = ArgumentParser() |
|
parser.add_argument("--gen_overlap_seq", default=False, action='store_true') |
|
parser.add_argument("--gen_seg_table", default=False, action='store_true') |
|
parser.add_argument("--frame_folder", type=str, required=True) |
|
parser.add_argument( |
|
"--method", |
|
type=str, |
|
required=True, |
|
help="Use mean/median for overlapped prediction. Use frame for gen_seg_table of frame prediction", |
|
) |
|
parser.add_argument("--overlap_out_dir", type=str) |
|
parser.add_argument("--table_out_dir", type=str) |
|
parser.add_argument("--overlap", type=float, default=0.875, help="Overlap percentatge. Default is 0.875") |
|
parser.add_argument("--window_length_in_sec", type=float, default=0.63) |
|
parser.add_argument("--shift_length_in_sec", type=float, default=0.01) |
|
parser.add_argument("--num_workers", type=int, default=4) |
|
args = parser.parse_args() |
|
|
|
if args.gen_overlap_seq: |
|
start = time.time() |
|
logging.info("Generating predictions with overlapping input segments") |
|
overlap_out_dir = generate_overlap_vad_seq( |
|
frame_pred_dir=args.frame_folder, |
|
smoothing_method=args.method, |
|
overlap=args.overlap, |
|
window_length_in_sec=args.window_length_in_sec, |
|
shift_length_in_sec=args.shift_length_in_sec, |
|
num_workers=args.num_workers, |
|
out_dir=args.overlap_out_dir, |
|
) |
|
logging.info( |
|
f"Finish generating predictions with overlapping input segments with smoothing_method={args.method} and overlap={args.overlap}" |
|
) |
|
end = time.time() |
|
logging.info(f"Generate overlapped prediction takes {end-start:.2f} seconds!\n Save to {overlap_out_dir}") |
|
|
|
if args.gen_seg_table: |
|
start = time.time() |
|
logging.info("Converting frame level prediction to speech/no-speech segment in start and end times format.") |
|
|
|
frame_length_in_sec = args.shift_length_in_sec |
|
if args.gen_overlap_seq: |
|
logging.info("Use overlap prediction. Change if you want to use basic frame level prediction") |
|
vad_pred_dir = overlap_out_dir |
|
frame_length_in_sec = 0.01 |
|
else: |
|
logging.info("Use basic frame level prediction") |
|
vad_pred_dir = args.frame_folder |
|
|
|
table_out_dir = generate_vad_segment_table( |
|
vad_pred_dir=vad_pred_dir, |
|
postprocessing_params=postprocessing_params, |
|
frame_length_in_sec=frame_length_in_sec, |
|
num_workers=args.num_workers, |
|
out_dir=args.table_out_dir, |
|
) |
|
logging.info(f"Finish generating speech semgents table with postprocessing_params: {postprocessing_params}") |
|
end = time.time() |
|
logging.info( |
|
f"Generating rttm-like tables for {vad_pred_dir} takes {end-start:.2f} seconds!\n Save to {table_out_dir}" |
|
) |
|
|