File size: 15,664 Bytes
cf932d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import os
import random

from typing import Dict, Optional, Sequence, Iterator, List, Iterable, Union
from PIL import PngImagePlugin, Image, ImageFile, ImageOps

import numpy as np

import torch
from torch.utils.data import (
    Dataset,
    ConcatDataset,
    Sampler,
    WeightedRandomSampler
)
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode

from robohusky.train.tcsloader import TCSLoader

from decord import VideoReader, cpu
from robohusky.video_transformers import (
    GroupNormalize,
    GroupScale,
    GroupCenterCrop,
    Stack,
    ToTorchFormatTensor,
    get_index,
)

from robohusky.conversation import get_conv_template

IMAGENET_DEFAULT_MEAN = [0.485, 0.456, 0.406]
IMAGENET_DEFAULT_STD = [0.229, 0.224, 0.225]
IMAGENET_STANDARD_MEAN = [0.5, 0.5, 0.5]
IMAGENET_STANDARD_STD = [0.5, 0.5, 0.5]
OPENAI_CLIP_MEAN = [0.48145466, 0.4578275, 0.40821073]
OPENAI_CLIP_STD = [0.26862954, 0.26130258, 0.27577711]

IGNORE_INDEX = -100

Image.MAX_IMAGE_PIXELS = None
ImageFile.LOAD_TRUNCATED_IMAGES = True
MaximumDecompressedSize = 1024
MegaByte = 2 ** 20
PngImagePlugin.MAX_TEXT_CHUNK = MaximumDecompressedSize * MegaByte

DEFAULT_IMG_START_TOKEN = "<img>"
DEFAULT_IMG_END_TOKEN = "</img>"

DEFAULT_VIDEO_START_TOKEN = "<vid>"
DEFAULT_VIDEO_END_TOKEN = "</vid>"

DEFAULT_EMBED_TOKEN = "<quad>"

conf_path = "/your path to/petrelf.conf"

def is_image(image_file):
    if image_file.lower().endswith(('.bmp', '.dib', '.png', '.jpg', '.jpeg', '.pbm', '.pgm', '.ppm', '.tif', '.tiff')):
        return True
    else:
        return False

def is_video(image_file):
    if image_file.lower().endswith(('.mp4', '.mkv', '.avi', '.wmv', '.iso', ".webm")):
        return True
    else:
        return False

def is_numpy(image_file):
    if image_file.endswith(".npy"):
        return True
    else:
        return False

def get_media_type(image_file):
    if is_image(image_file):
        return "image"
    elif is_video(image_file):
        return "video"
    elif is_numpy(image_file):
        return "numpy"
    else:
        return "text"

def build_transform(input_size, norm_type="openai", media_type="image"):
    if norm_type == "openai":
        mean = OPENAI_CLIP_MEAN
        std = OPENAI_CLIP_STD
    elif norm_type == "imagenet":
        mean = IMAGENET_DEFAULT_MEAN
        std = IMAGENET_DEFAULT_STD
    else:
        mean = IMAGENET_DEFAULT_MEAN
        std = IMAGENET_DEFAULT_STD

    if media_type == "image":
        transform = T.Compose([
            T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
            T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
            T.ToTensor(),
            T.Normalize(mean=mean, std=std)
        ])
    elif media_type == "video":
        transform = T.Compose([
            GroupScale(int(input_size), interpolation=InterpolationMode.BICUBIC),
            GroupCenterCrop(input_size),
            Stack(),
            ToTorchFormatTensor(),
            GroupNormalize(mean=mean, std=std)
        ])
    else:
        transform = None
    return transform

def check_format(data):
    if not ('id' in data and 'image' in data and 'conversations' in data and len(data['conversations']) % 2 == 0):
        print(f"Lake field: {data}")
        return False
    for i, message in enumerate(data['conversations']):
        if i == 0:
            if not (message['value'].startswith("<image>\n") or message['value'].endswith("\n<image>")):
                print(f"No <image>: {data}")
                return False
        if i % 2 == 0:
            if not (message['from'] == 'human'):
                print(f"Not from human: {data}")
                return False
        else:
            if not (message['from'] == 'gpt'):
                print(f"Not from gpt: {data}")
                return False
        if message['value'] is None or (len(message['value']) == 0):
            print(f"No Message: {data}")
            return False
    return True

def format_inputs(sources, conv_tempt="husky", num_query_tokens=256):
    # Apply prompt templates
    conv = get_conv_template(conv_tempt).copy()
    roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
    conversations = []

    for i, source in enumerate(sources):
        if roles[source[0]["from"]] != conv.roles[0]:
            # Skip the first one if it is not from human
            source = source[1:]

        conv.messages = []
        for j, sentence in enumerate(source):
            role = roles[sentence["from"]]
            assert role == conv.roles[j % 2], f"{i}"
            # vision is only supported for the human input
            if role == conv.roles[0]:
                value = sentence["value"]
                if "<image>" in value:
                    if value.endswith("\n<image>"):
                        value = "<image>\n" + value.replace("\n<image>", "")

                    image_query = DEFAULT_IMG_START_TOKEN + num_query_tokens * DEFAULT_EMBED_TOKEN + DEFAULT_IMG_END_TOKEN
                    sentence["value"] = value.replace("<image>", image_query)

                elif "<video>" in value:
                    if value.endswith("\n<video>"):
                        value = "<video>\n" + value.replace("\n<video>", "")

                    video_query = DEFAULT_VIDEO_START_TOKEN + num_query_tokens * DEFAULT_EMBED_TOKEN + DEFAULT_VIDEO_END_TOKEN
                    sentence["value"] = value.replace("<video>", video_query)

            conv.append_message(role, sentence["value"])
        conversations.append(conv.get_prompt())

    return conversations, conv

def process_func(examples, tokenizer, max_seq_length=-1, conv_tempt="husky", num_query_tokens=256):
    conversations, conv = format_inputs(examples['conversations'], conv_tempt, num_query_tokens)
    if max_seq_length < 0:
        model_inputs = tokenizer(
            conversations,
            return_tensors="pt",
            max_length=tokenizer.model_max_length,
            truncation=True,
        )
    else:
        model_inputs = tokenizer(
            conversations,
            max_length=max_seq_length,
            padding="max_length",
            truncation=True,
            return_tensors="pt",
        )

    model_inputs.pop("token_type_ids", None)
    # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
    # padding in the loss.
    targets = model_inputs["input_ids"].clone()

    # Mask targets
    sep = conv.sep + conv.roles[1] + ": "
    for conversation, target in zip(conversations, targets):
        total_len = int(target.ne(tokenizer.pad_token_id).sum())

        turns = conversation.split(conv.sep2)
        cur_len = 1
        target[:cur_len] = IGNORE_INDEX
        for i, turn in enumerate(turns):
            if turn == "":
                break
            turn_len = len(tokenizer(turn).input_ids)

            parts = turn.split(sep)
            if len(parts) != 2:
                break
            parts[0] += sep

            # "-2" is hardcoded for the Llama tokenizer to make the offset correct.
            instruction_len = len(tokenizer(parts[0]).input_ids) - 2

            if i != 0 and not tokenizer.legacy:
                # The legacy and non-legacy modes handle special tokens differently
                instruction_len -= 1

            # Ignore the user instructions
            target[cur_len: cur_len + instruction_len] = IGNORE_INDEX
            cur_len += turn_len

            if i != 0 and not tokenizer.legacy:
                # The legacy and non-legacy modes handle special tokens differently
                cur_len -= 1

        target[cur_len:] = IGNORE_INDEX

        if cur_len < tokenizer.model_max_length:
            if cur_len != total_len:
                target[:] = IGNORE_INDEX

    model_inputs["labels"] = targets
    return model_inputs

class BaseDataset(Dataset):
    def __init__(
            self,
            dataset,
            processor,
            image_path="",
            input_size=224,
            num_segments=8,
            norm_type="openai",
            media_type="image"
    ):
        super(BaseDataset, self).__init__()
        self.dataset = dataset
        self.image_path = image_path
        self.input_size = input_size
        self.num_segments = num_segments

        self.media_type = media_type
        self.transform = build_transform(input_size, norm_type, media_type)
        self.husky_processor = processor
        self.tcs_loader = TCSLoader(os.path.abspath(conf_path), media_type=media_type)

        self.cached_data_dict = {}

    def __len__(self):
        return len(self.dataset)

    def __getitem__(self, i) -> Dict[str, torch.Tensor]:
        if i in self.cached_data_dict:
            return self.cached_data_dict[i]

        data = self.dataset[i]
        image_file = data["image"] if "image" in data else data["video"]

        if self.media_type == "llm" or image_file == "":
            # Pseudo pixel_values
            # pixel_values = torch.zeros(size=(3, self.input_size, self.input_size))
            pixel_values = None
        else:
            if self.image_path != "":
                image_file = os.path.join(self.image_path, image_file)
            if "s3://" not in image_file and not os.path.exists(image_file):
                i = random.randint(0, len(self.dataset))
                return self.__getitem__(i % len(self.dataset))

            try:
                if self.media_type == "image":
                    # load from ceph
                    if "s3://" in image_file:
                        image = self.tcs_loader(image_file)
                    else:
                        image = Image.open(image_file).convert('RGB')

                    # process image with extreme aspect ratios
                    height, width = image.size
                    if height / width >= 1.8:
                        delta = height - width
                        padding = (0, delta // 2, 0, delta - delta // 2)
                        image = ImageOps.expand(image, padding)
                    elif height / width <= 0.56:
                        delta = width - height
                        padding = (delta // 2, 0, delta - delta // 2, 0)
                        image = ImageOps.expand(image, padding)
                    pixel_values = self.transform(image)
                elif self.media_type == "video":
                    if "s3://" in image_file:
                        vr = self.tcs_loader(image_file)
                    else:
                        vr = VideoReader(image_file, ctx=cpu(0))

                    num_frames = len(vr)
                    frame_indices = get_index(num_frames, self.num_segments)
                    images_group = list()
                    for frame_index in frame_indices:
                        img = Image.fromarray(vr[frame_index].asnumpy())
                        images_group.append(img)
                    pixel_values = self.transform(images_group)
                    TC, H, W = pixel_values.shape
                    pixel_values = pixel_values.reshape(TC // 3, 3, H, W).transpose(0, 1)  # [C, T, H, W]
                else:
                    # load numpy
                    if "s3://" in image_file:
                        pixel_values = self.tcs_loader(image_file)
                    else:
                        pixel_values = np.load(image_file)
                    pixel_values = torch.tensor(pixel_values).transpose(0, 1)
            except (AttributeError, OSError):
                with open("error.txt", 'a') as f:
                    f.write(image_file + '\n')
                i = random.randint(0, len(self.dataset))
                return self.__getitem__(i % len(self.dataset))

        for k, v in data.items():
            data[k] = [v]
        ret = self.husky_processor(data)
        for k, v in ret.items():
            ret[k] = v[0]

        if pixel_values is not None:
            ret["pixel_values"] = pixel_values

        self.cached_data_dict[i] = ret
        return ret

class WeightedConcatDataset(ConcatDataset):
    def __init__(
            self,
            datasets: List[Dataset],
            weights: Sequence[float] = None,
            replacement: bool = True,
            batch_size: int = -1,
            generator=None
    ) -> None:
        super().__init__(datasets)
        if weights is None:
            weights = [1.0] * len(self.datasets)
        weights_tensor = torch.as_tensor(weights, dtype=torch.double)
        if len(weights_tensor.shape) != 1:
            raise ValueError("weights should be a 1d sequence but given "
                             "weights have shape {}".format(tuple(weights_tensor.shape)))
        self.weights = weights_tensor
        self.batch_size = batch_size

        self.replacement = replacement
        self.generator = generator

        if self.batch_size <= 0:
            self.num_samples = sum([len(d) for d in datasets])
            self.sampler = WeightedRandomSampler(
                weights=self.weights,
                num_samples=self.num_samples,
                replacement=self.replacement
            )
        else:
            self.task_batches = [len(d) // batch_size for d in datasets]
            self.num_samples = sum(self.task_batches) * batch_size
            self.sampler = WeightedBatchSampler(
                weights=self.weights,
                num_samples=self.num_samples,
                batch_size=self.batch_size,
                replacement=self.replacement
            )

    def __iter__(self) -> Iterator[int]:
        return iter(self.sampler)

    def __len__(self) -> int:
        return self.num_samples

class WeightedBatchSampler(Sampler[int]):
    weights: torch.Tensor
    num_samples: int
    batch_size: int
    replacement: bool

    def __init__(
            self,
            weights: Sequence[float],
            num_samples: int,
            batch_size: int,
            replacement: bool = True,
            generator=None
    ) -> None:
        if not isinstance(batch_size, int) or isinstance(batch_size, bool) or \
                batch_size <= 0:
            raise ValueError("batch_size should be a positive integer value, "
                             "but got batch_size={}".format(batch_size))
        if not isinstance(num_samples, int) or isinstance(num_samples, bool) or \
                num_samples <= 0:
            raise ValueError("num_samples should be a positive integer "
                             "value, but got num_samples={}".format(num_samples))
        if not isinstance(replacement, bool):
            raise ValueError("replacement should be a boolean value, but got "
                             "replacement={}".format(replacement))

        weights_tensor = torch.as_tensor(weights, dtype=torch.double)
        if len(weights_tensor.shape) != 1:
            raise ValueError("weights should be a 1d sequence but given "
                             "weights have shape {}".format(tuple(weights_tensor.shape)))

        self.weights = weights_tensor
        self.num_samples = num_samples
        self.batch_size = batch_size
        self.num_batches = num_samples // batch_size
        self.replacement = replacement
        self.generator = generator

    def __iter__(self) -> Iterator[int]:
        rand_tensor = torch.multinomial(self.weights, self.num_batches, self.replacement, generator=self.generator)
        rand_tensor = rand_tensor.repeat_interleave(self.batch_size)

        yield from iter(rand_tensor.tolist())

    def __len__(self) -> int:
        return self.num_samples