embodied_explainer / robohusky /base_dataset.py
ccclemenfff's picture
Add model code supports
cf932d8
raw
history blame
7.51 kB
import os
import random
from typing import Dict, Optional, Sequence
from PIL import PngImagePlugin, Image, ImageFile
import torch
from torch.utils.data import Dataset
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from robohusky.train.tcsloader import TCSLoader
from robohusky.conversation import get_conv_template
IGNORE_INDEX = -100
Image.MAX_IMAGE_PIXELS = None
ImageFile.LOAD_TRUNCATED_IMAGES = True
MaximumDecompressedSize = 1024
MegaByte = 2 ** 20
PngImagePlugin.MAX_TEXT_CHUNK = MaximumDecompressedSize * MegaByte
DEFAULT_IMG_START_TOKEN = "<img>"
DEFAULT_IMG_END_TOKEN = "</img>"
DEFAULT_VIDEO_START_TOKEN = "<vid>"
DEFAULT_VIDEO_END_TOKEN = "</vid>"
def is_image(image_file):
if image_file.lower().endswith(('.bmp', '.dib', '.png', '.jpg', '.jpeg', '.pbm', '.pgm', '.ppm', '.tif', '.tiff')):
return True
else:
return False
def is_video(image_file):
if image_file.lower().endswith(('.mp4', '.mkv', '.avi', '.wmv', '.iso', ".webm")):
return True
else:
return False
def build_transform(input_size):
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
])
return transform
def format_inputs(sources):
# Apply prompt templates
conv = get_conv_template("husky").copy()
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
conversations = []
for i, source in enumerate(sources):
if roles[source[0]["from"]] != conv.roles[0]:
# Skip the first one if it is not from human
source = source[1:]
conv.messages = []
for j, sentence in enumerate(source):
role = roles[sentence["from"]]
assert role == conv.roles[j % 2], f"{i}"
# vision is only supported for the human input
if role == conv.roles[0]:
value = sentence["value"]
if "<image>" in value:
if value.endswith("\n<image>"):
value = "<image>\n" + value.replace("\n<image>", "")
image_query = DEFAULT_IMG_START_TOKEN + DEFAULT_IMG_END_TOKEN
sentence["value"] = value.replace("<image>", image_query)
elif "<video>" in value:
if value.endswith("\n<video>"):
value = "<video>\n" + value.replace("\n<video>", "")
video_query = DEFAULT_VIDEO_START_TOKEN + DEFAULT_VIDEO_END_TOKEN
sentence["value"] = value.replace("<video>", video_query)
conv.append_message(role, sentence["value"])
conversations.append(conv.get_prompt())
return conversations, conv
def process_func(examples, tokenizer, max_seq_length):
conversations, conv = format_inputs(examples['conversations'])
model_inputs = tokenizer(
conversations,
max_length=max_seq_length,
padding="max_length",
truncation=True,
return_tensors="pt",
)
model_inputs.pop("token_type_ids", None)
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
# padding in the loss.
targets = model_inputs["input_ids"].clone()
# Mask targets
sep = conv.sep + conv.roles[1] + ": "
for conversation, target in zip(conversations, targets):
total_len = int(target.ne(tokenizer.pad_token_id).sum())
turns = conversation.split(conv.sep2)
cur_len = 1
target[:cur_len] = IGNORE_INDEX
for i, turn in enumerate(turns):
if turn == "":
break
turn_len = len(tokenizer(turn).input_ids)
parts = turn.split(sep)
if len(parts) != 2:
break
parts[0] += sep
# "-2" is hardcoded for the Llama tokenizer to make the offset correct.
instruction_len = len(tokenizer(parts[0]).input_ids) - 2
if i != 0 and not tokenizer.legacy:
# The legacy and non-legacy modes handle special tokens differently
instruction_len -= 1
# Ignore the user instructions
target[cur_len: cur_len + instruction_len] = IGNORE_INDEX
cur_len += turn_len
if i != 0 and not tokenizer.legacy:
# The legacy and non-legacy modes handle special tokens differently
cur_len -= 1
target[cur_len:] = IGNORE_INDEX
if cur_len < tokenizer.model_max_length:
if cur_len != total_len:
target[:] = IGNORE_INDEX
model_inputs["labels"] = targets
return model_inputs
class BaseDataset(Dataset):
def __init__(self, dataset, processor, image_path="", input_size=224):
super(BaseDataset, self).__init__()
self.dataset = dataset
self.image_path = image_path
self.transform = build_transform(input_size)
self.husky_processor = processor
self.cached_data_dict = {}
def __len__(self):
return len(self.dataset)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
if i in self.cached_data_dict:
return self.cached_data_dict[i]
data = self.dataset[i]
image_file = data.pop("image", None)
if self.image_path != "":
image_file = os.path.join(self.image_path, image_file)
if not os.path.exists(image_file):
return self.__getitem__((i + 1) % len(self.dataset))
image = Image.open(image_file)
else:
image = Image.open(image_file)
for k, v in data.items():
data[k] = [v]
ret = self.husky_processor(data)
for k, v in ret.items():
ret[k] = v[0]
pixel_values = self.transform(image)
ret["pixel_values"] = pixel_values
self.cached_data_dict[i] = ret
return ret
class CephDataset(Dataset):
def __init__(self, dataset, processor, input_size=224):
super(CephDataset, self).__init__()
self.dataset = dataset
self.transform = build_transform(input_size)
self.husky_processor = processor
conf_path = "./petrelf.conf"
self.conf_path = os.path.abspath(conf_path)
self.initialized = False
self._init_memcached()
def _init_memcached(self):
if not self.initialized:
assert self.conf_path is not None
self.mt_loader = TCSLoader(self.conf_path)
self.initialized = True
def __len__(self):
return len(self.dataset)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
data = self.dataset[i]
image_file = data.pop("image", None)
try:
image = self.mt_loader(image_file).convert('RGB')
except (AttributeError, OSError):
with open("error.txt", 'a') as f:
f.write(image_file + '\n')
i = random.randint(0, len(self.dataset))
return self.__getitem__(i % len(self.dataset))
for k, v in data.items():
data[k] = [v]
ret = self.husky_processor(data)
for k, v in ret.items():
ret[k] = v[0]
pixel_values = self.transform(image)
ret["pixel_values"] = pixel_values
return ret