embodied_explainer / robohusky /base_dataset_uni.py
ccclemenfff's picture
Add model code supports
cf932d8
raw
history blame
15.7 kB
import os
import random
from typing import Dict, Optional, Sequence, Iterator, List, Iterable, Union
from PIL import PngImagePlugin, Image, ImageFile, ImageOps
import numpy as np
import torch
from torch.utils.data import (
Dataset,
ConcatDataset,
Sampler,
WeightedRandomSampler
)
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from robohusky.train.tcsloader import TCSLoader
from decord import VideoReader, cpu
from robohusky.video_transformers import (
GroupNormalize,
GroupScale,
GroupCenterCrop,
Stack,
ToTorchFormatTensor,
get_index,
)
from robohusky.conversation import get_conv_template
IMAGENET_DEFAULT_MEAN = [0.485, 0.456, 0.406]
IMAGENET_DEFAULT_STD = [0.229, 0.224, 0.225]
IMAGENET_STANDARD_MEAN = [0.5, 0.5, 0.5]
IMAGENET_STANDARD_STD = [0.5, 0.5, 0.5]
OPENAI_CLIP_MEAN = [0.48145466, 0.4578275, 0.40821073]
OPENAI_CLIP_STD = [0.26862954, 0.26130258, 0.27577711]
IGNORE_INDEX = -100
Image.MAX_IMAGE_PIXELS = None
ImageFile.LOAD_TRUNCATED_IMAGES = True
MaximumDecompressedSize = 1024
MegaByte = 2 ** 20
PngImagePlugin.MAX_TEXT_CHUNK = MaximumDecompressedSize * MegaByte
DEFAULT_IMG_START_TOKEN = "<img>"
DEFAULT_IMG_END_TOKEN = "</img>"
DEFAULT_VIDEO_START_TOKEN = "<vid>"
DEFAULT_VIDEO_END_TOKEN = "</vid>"
DEFAULT_EMBED_TOKEN = "<quad>"
conf_path = "/your path to/petrelf.conf"
def is_image(image_file):
if image_file.lower().endswith(('.bmp', '.dib', '.png', '.jpg', '.jpeg', '.pbm', '.pgm', '.ppm', '.tif', '.tiff')):
return True
else:
return False
def is_video(image_file):
if image_file.lower().endswith(('.mp4', '.mkv', '.avi', '.wmv', '.iso', ".webm")):
return True
else:
return False
def is_numpy(image_file):
if image_file.endswith(".npy"):
return True
else:
return False
def get_media_type(image_file):
if is_image(image_file):
return "image"
elif is_video(image_file):
return "video"
elif is_numpy(image_file):
return "numpy"
else:
return "text"
def build_transform(input_size, norm_type="openai", media_type="image"):
if norm_type == "openai":
mean = OPENAI_CLIP_MEAN
std = OPENAI_CLIP_STD
elif norm_type == "imagenet":
mean = IMAGENET_DEFAULT_MEAN
std = IMAGENET_DEFAULT_STD
else:
mean = IMAGENET_DEFAULT_MEAN
std = IMAGENET_DEFAULT_STD
if media_type == "image":
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=mean, std=std)
])
elif media_type == "video":
transform = T.Compose([
GroupScale(int(input_size), interpolation=InterpolationMode.BICUBIC),
GroupCenterCrop(input_size),
Stack(),
ToTorchFormatTensor(),
GroupNormalize(mean=mean, std=std)
])
else:
transform = None
return transform
def check_format(data):
if not ('id' in data and 'image' in data and 'conversations' in data and len(data['conversations']) % 2 == 0):
print(f"Lake field: {data}")
return False
for i, message in enumerate(data['conversations']):
if i == 0:
if not (message['value'].startswith("<image>\n") or message['value'].endswith("\n<image>")):
print(f"No <image>: {data}")
return False
if i % 2 == 0:
if not (message['from'] == 'human'):
print(f"Not from human: {data}")
return False
else:
if not (message['from'] == 'gpt'):
print(f"Not from gpt: {data}")
return False
if message['value'] is None or (len(message['value']) == 0):
print(f"No Message: {data}")
return False
return True
def format_inputs(sources, conv_tempt="husky", num_query_tokens=256):
# Apply prompt templates
conv = get_conv_template(conv_tempt).copy()
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
conversations = []
for i, source in enumerate(sources):
if roles[source[0]["from"]] != conv.roles[0]:
# Skip the first one if it is not from human
source = source[1:]
conv.messages = []
for j, sentence in enumerate(source):
role = roles[sentence["from"]]
assert role == conv.roles[j % 2], f"{i}"
# vision is only supported for the human input
if role == conv.roles[0]:
value = sentence["value"]
if "<image>" in value:
if value.endswith("\n<image>"):
value = "<image>\n" + value.replace("\n<image>", "")
image_query = DEFAULT_IMG_START_TOKEN + num_query_tokens * DEFAULT_EMBED_TOKEN + DEFAULT_IMG_END_TOKEN
sentence["value"] = value.replace("<image>", image_query)
elif "<video>" in value:
if value.endswith("\n<video>"):
value = "<video>\n" + value.replace("\n<video>", "")
video_query = DEFAULT_VIDEO_START_TOKEN + num_query_tokens * DEFAULT_EMBED_TOKEN + DEFAULT_VIDEO_END_TOKEN
sentence["value"] = value.replace("<video>", video_query)
conv.append_message(role, sentence["value"])
conversations.append(conv.get_prompt())
return conversations, conv
def process_func(examples, tokenizer, max_seq_length=-1, conv_tempt="husky", num_query_tokens=256):
conversations, conv = format_inputs(examples['conversations'], conv_tempt, num_query_tokens)
if max_seq_length < 0:
model_inputs = tokenizer(
conversations,
return_tensors="pt",
max_length=tokenizer.model_max_length,
truncation=True,
)
else:
model_inputs = tokenizer(
conversations,
max_length=max_seq_length,
padding="max_length",
truncation=True,
return_tensors="pt",
)
model_inputs.pop("token_type_ids", None)
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
# padding in the loss.
targets = model_inputs["input_ids"].clone()
# Mask targets
sep = conv.sep + conv.roles[1] + ": "
for conversation, target in zip(conversations, targets):
total_len = int(target.ne(tokenizer.pad_token_id).sum())
turns = conversation.split(conv.sep2)
cur_len = 1
target[:cur_len] = IGNORE_INDEX
for i, turn in enumerate(turns):
if turn == "":
break
turn_len = len(tokenizer(turn).input_ids)
parts = turn.split(sep)
if len(parts) != 2:
break
parts[0] += sep
# "-2" is hardcoded for the Llama tokenizer to make the offset correct.
instruction_len = len(tokenizer(parts[0]).input_ids) - 2
if i != 0 and not tokenizer.legacy:
# The legacy and non-legacy modes handle special tokens differently
instruction_len -= 1
# Ignore the user instructions
target[cur_len: cur_len + instruction_len] = IGNORE_INDEX
cur_len += turn_len
if i != 0 and not tokenizer.legacy:
# The legacy and non-legacy modes handle special tokens differently
cur_len -= 1
target[cur_len:] = IGNORE_INDEX
if cur_len < tokenizer.model_max_length:
if cur_len != total_len:
target[:] = IGNORE_INDEX
model_inputs["labels"] = targets
return model_inputs
class BaseDataset(Dataset):
def __init__(
self,
dataset,
processor,
image_path="",
input_size=224,
num_segments=8,
norm_type="openai",
media_type="image"
):
super(BaseDataset, self).__init__()
self.dataset = dataset
self.image_path = image_path
self.input_size = input_size
self.num_segments = num_segments
self.media_type = media_type
self.transform = build_transform(input_size, norm_type, media_type)
self.husky_processor = processor
self.tcs_loader = TCSLoader(os.path.abspath(conf_path), media_type=media_type)
self.cached_data_dict = {}
def __len__(self):
return len(self.dataset)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
if i in self.cached_data_dict:
return self.cached_data_dict[i]
data = self.dataset[i]
image_file = data["image"] if "image" in data else data["video"]
if self.media_type == "llm" or image_file == "":
# Pseudo pixel_values
# pixel_values = torch.zeros(size=(3, self.input_size, self.input_size))
pixel_values = None
else:
if self.image_path != "":
image_file = os.path.join(self.image_path, image_file)
if "s3://" not in image_file and not os.path.exists(image_file):
i = random.randint(0, len(self.dataset))
return self.__getitem__(i % len(self.dataset))
try:
if self.media_type == "image":
# load from ceph
if "s3://" in image_file:
image = self.tcs_loader(image_file)
else:
image = Image.open(image_file).convert('RGB')
# process image with extreme aspect ratios
height, width = image.size
if height / width >= 1.8:
delta = height - width
padding = (0, delta // 2, 0, delta - delta // 2)
image = ImageOps.expand(image, padding)
elif height / width <= 0.56:
delta = width - height
padding = (delta // 2, 0, delta - delta // 2, 0)
image = ImageOps.expand(image, padding)
pixel_values = self.transform(image)
elif self.media_type == "video":
if "s3://" in image_file:
vr = self.tcs_loader(image_file)
else:
vr = VideoReader(image_file, ctx=cpu(0))
num_frames = len(vr)
frame_indices = get_index(num_frames, self.num_segments)
images_group = list()
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy())
images_group.append(img)
pixel_values = self.transform(images_group)
TC, H, W = pixel_values.shape
pixel_values = pixel_values.reshape(TC // 3, 3, H, W).transpose(0, 1) # [C, T, H, W]
else:
# load numpy
if "s3://" in image_file:
pixel_values = self.tcs_loader(image_file)
else:
pixel_values = np.load(image_file)
pixel_values = torch.tensor(pixel_values).transpose(0, 1)
except (AttributeError, OSError):
with open("error.txt", 'a') as f:
f.write(image_file + '\n')
i = random.randint(0, len(self.dataset))
return self.__getitem__(i % len(self.dataset))
for k, v in data.items():
data[k] = [v]
ret = self.husky_processor(data)
for k, v in ret.items():
ret[k] = v[0]
if pixel_values is not None:
ret["pixel_values"] = pixel_values
self.cached_data_dict[i] = ret
return ret
class WeightedConcatDataset(ConcatDataset):
def __init__(
self,
datasets: List[Dataset],
weights: Sequence[float] = None,
replacement: bool = True,
batch_size: int = -1,
generator=None
) -> None:
super().__init__(datasets)
if weights is None:
weights = [1.0] * len(self.datasets)
weights_tensor = torch.as_tensor(weights, dtype=torch.double)
if len(weights_tensor.shape) != 1:
raise ValueError("weights should be a 1d sequence but given "
"weights have shape {}".format(tuple(weights_tensor.shape)))
self.weights = weights_tensor
self.batch_size = batch_size
self.replacement = replacement
self.generator = generator
if self.batch_size <= 0:
self.num_samples = sum([len(d) for d in datasets])
self.sampler = WeightedRandomSampler(
weights=self.weights,
num_samples=self.num_samples,
replacement=self.replacement
)
else:
self.task_batches = [len(d) // batch_size for d in datasets]
self.num_samples = sum(self.task_batches) * batch_size
self.sampler = WeightedBatchSampler(
weights=self.weights,
num_samples=self.num_samples,
batch_size=self.batch_size,
replacement=self.replacement
)
def __iter__(self) -> Iterator[int]:
return iter(self.sampler)
def __len__(self) -> int:
return self.num_samples
class WeightedBatchSampler(Sampler[int]):
weights: torch.Tensor
num_samples: int
batch_size: int
replacement: bool
def __init__(
self,
weights: Sequence[float],
num_samples: int,
batch_size: int,
replacement: bool = True,
generator=None
) -> None:
if not isinstance(batch_size, int) or isinstance(batch_size, bool) or \
batch_size <= 0:
raise ValueError("batch_size should be a positive integer value, "
"but got batch_size={}".format(batch_size))
if not isinstance(num_samples, int) or isinstance(num_samples, bool) or \
num_samples <= 0:
raise ValueError("num_samples should be a positive integer "
"value, but got num_samples={}".format(num_samples))
if not isinstance(replacement, bool):
raise ValueError("replacement should be a boolean value, but got "
"replacement={}".format(replacement))
weights_tensor = torch.as_tensor(weights, dtype=torch.double)
if len(weights_tensor.shape) != 1:
raise ValueError("weights should be a 1d sequence but given "
"weights have shape {}".format(tuple(weights_tensor.shape)))
self.weights = weights_tensor
self.num_samples = num_samples
self.batch_size = batch_size
self.num_batches = num_samples // batch_size
self.replacement = replacement
self.generator = generator
def __iter__(self) -> Iterator[int]:
rand_tensor = torch.multinomial(self.weights, self.num_batches, self.replacement, generator=self.generator)
rand_tensor = rand_tensor.repeat_interleave(self.batch_size)
yield from iter(rand_tensor.tolist())
def __len__(self) -> int:
return self.num_samples