|
import dataclasses |
|
import gc |
|
import glob |
|
import os |
|
|
|
from accelerate import init_empty_weights |
|
from accelerate.utils import set_module_tensor_to_device |
|
import torch |
|
from torch import Tensor |
|
from torch.nn import functional as F |
|
import torch.nn as nn |
|
from tqdm import tqdm |
|
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
@dataclasses.dataclass |
|
class CompressionConfig: |
|
"""Group-wise quantization.""" |
|
|
|
num_bits: int |
|
group_size: int |
|
group_dim: int |
|
symmetric: bool |
|
enabled: bool = True |
|
|
|
|
|
default_compression_config = CompressionConfig( |
|
num_bits=8, group_size=256, group_dim=1, symmetric=True, enabled=True |
|
) |
|
|
|
|
|
class CLinear(nn.Module): |
|
"""Compressed Linear Layer.""" |
|
|
|
def __init__(self, weight=None, bias=None, device=None): |
|
super().__init__() |
|
if weight is None: |
|
self.weight = None |
|
elif isinstance(weight, Tensor): |
|
self.weight = compress(weight.data.to(device), default_compression_config) |
|
else: |
|
self.weight = weight |
|
self.bias = bias |
|
|
|
def forward(self, input: Tensor) -> Tensor: |
|
weight = decompress(self.weight, default_compression_config) |
|
if self.bias is None: |
|
return F.linear(input.to(weight.dtype), weight) |
|
return F.linear(input.to(weight.dtype), weight, self.bias.to(weight.dtype)) |
|
|
|
|
|
def compress_module(module, target_device): |
|
for attr_str in dir(module): |
|
target_attr = getattr(module, attr_str) |
|
if type(target_attr) == torch.nn.Linear: |
|
setattr( |
|
module, |
|
attr_str, |
|
CLinear(target_attr.weight, target_attr.bias, target_device), |
|
) |
|
for name, child in module.named_children(): |
|
compress_module(child, target_device) |
|
|
|
|
|
def get_compressed_list(module, prefix=""): |
|
compressed_list = [] |
|
for attr_str in dir(module): |
|
target_attr = getattr(module, attr_str) |
|
if type(target_attr) == torch.nn.Linear: |
|
full_name = ( |
|
f"{prefix}.{attr_str}.weight" if prefix else f"{attr_str}.weight" |
|
) |
|
compressed_list.append(full_name) |
|
for name, child in module.named_children(): |
|
child_prefix = f"{prefix}.{name}" if prefix else name |
|
for each in get_compressed_list(child, child_prefix): |
|
compressed_list.append(each) |
|
return compressed_list |
|
|
|
|
|
def apply_compressed_weight(module, compressed_state_dict, target_device, prefix=""): |
|
for attr_str in dir(module): |
|
target_attr = getattr(module, attr_str) |
|
if type(target_attr) == torch.nn.Linear: |
|
full_name = ( |
|
f"{prefix}.{attr_str}.weight" if prefix else f"{attr_str}.weight" |
|
) |
|
setattr( |
|
module, |
|
attr_str, |
|
CLinear( |
|
compressed_state_dict[full_name], target_attr.bias, target_device |
|
), |
|
) |
|
for name, child in module.named_children(): |
|
child_prefix = f"{prefix}.{name}" if prefix else name |
|
apply_compressed_weight( |
|
child, compressed_state_dict, target_device, child_prefix |
|
) |
|
|
|
|
|
def load_compress_model(model_path, device, torch_dtype, use_fast=False): |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=use_fast) |
|
base_pattern = os.path.join(model_path, "pytorch_model*.bin") |
|
files = glob.glob(base_pattern) |
|
|
|
with init_empty_weights(): |
|
config = AutoConfig.from_pretrained( |
|
model_path, low_cpu_mem_usage=True, torch_dtype=torch_dtype |
|
) |
|
model = AutoModelForCausalLM.from_config(config) |
|
linear_weights = get_compressed_list(model) |
|
|
|
compressed_state_dict = {} |
|
|
|
for filename in tqdm(files): |
|
tmp_state_dict = torch.load(filename) |
|
for name in tmp_state_dict: |
|
if name in linear_weights: |
|
tensor = tmp_state_dict[name].to(device).data.to(torch_dtype) |
|
compressed_state_dict[name] = compress( |
|
tensor, default_compression_config |
|
) |
|
else: |
|
compressed_state_dict[name] = tmp_state_dict[name].to(device) |
|
tmp_state_dict[name] = None |
|
tensor = None |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
for name in model.state_dict(): |
|
if name not in linear_weights: |
|
set_module_tensor_to_device( |
|
model, name, device, value=compressed_state_dict[name] |
|
) |
|
apply_compressed_weight(model, compressed_state_dict, device) |
|
|
|
model.to(device) |
|
|
|
return model, tokenizer |
|
|
|
|
|
def compress(tensor, config): |
|
"""Simulate group-wise quantization.""" |
|
if not config.enabled: |
|
return tensor |
|
|
|
group_size, num_bits, group_dim, symmetric = ( |
|
config.group_size, |
|
config.num_bits, |
|
config.group_dim, |
|
config.symmetric, |
|
) |
|
assert num_bits <= 8 |
|
|
|
original_shape = tensor.shape |
|
num_groups = (original_shape[group_dim] + group_size - 1) // group_size |
|
new_shape = ( |
|
original_shape[:group_dim] |
|
+ (num_groups, group_size) |
|
+ original_shape[group_dim + 1 :] |
|
) |
|
|
|
|
|
pad_len = (group_size - original_shape[group_dim] % group_size) % group_size |
|
if pad_len != 0: |
|
pad_shape = ( |
|
original_shape[:group_dim] + (pad_len,) + original_shape[group_dim + 1 :] |
|
) |
|
tensor = torch.cat( |
|
[tensor, torch.zeros(pad_shape, dtype=tensor.dtype, device=tensor.device)], |
|
dim=group_dim, |
|
) |
|
data = tensor.view(new_shape) |
|
|
|
|
|
if symmetric: |
|
B = 2 ** (num_bits - 1) - 1 |
|
scale = B / torch.max(data.abs(), dim=group_dim + 1, keepdim=True)[0] |
|
data = data * scale |
|
data = data.clamp_(-B, B).round_().to(torch.int8) |
|
return data, scale, original_shape |
|
else: |
|
B = 2**num_bits - 1 |
|
mn = torch.min(data, dim=group_dim + 1, keepdim=True)[0] |
|
mx = torch.max(data, dim=group_dim + 1, keepdim=True)[0] |
|
|
|
scale = B / (mx - mn) |
|
data = data - mn |
|
data.mul_(scale) |
|
|
|
data = data.clamp_(0, B).round_().to(torch.uint8) |
|
return data, mn, scale, original_shape |
|
|
|
|
|
def decompress(packed_data, config): |
|
"""Simulate group-wise dequantization.""" |
|
if not config.enabled: |
|
return packed_data |
|
|
|
group_size, num_bits, group_dim, symmetric = ( |
|
config.group_size, |
|
config.num_bits, |
|
config.group_dim, |
|
config.symmetric, |
|
) |
|
|
|
|
|
if symmetric: |
|
data, scale, original_shape = packed_data |
|
data = data / scale |
|
else: |
|
data, mn, scale, original_shape = packed_data |
|
data = data / scale |
|
data.add_(mn) |
|
|
|
|
|
pad_len = (group_size - original_shape[group_dim] % group_size) % group_size |
|
if pad_len: |
|
padded_original_shape = ( |
|
original_shape[:group_dim] |
|
+ (original_shape[group_dim] + pad_len,) |
|
+ original_shape[group_dim + 1 :] |
|
) |
|
data = data.reshape(padded_original_shape) |
|
indices = [slice(0, x) for x in original_shape] |
|
return data[indices].contiguous() |
|
else: |
|
return data.view(original_shape) |