ccclemenfff commited on
Commit
3d760ea
·
1 Parent(s): dc4d943

the latest version based on inference.py

Browse files
Files changed (2) hide show
  1. handler.py +65 -130
  2. inference.py +415 -0
handler.py CHANGED
@@ -1,142 +1,77 @@
1
  import os
2
- import torch
3
  import base64
4
- from PIL import Image
5
- from io import BytesIO
6
- from typing import Dict, Any
7
- from transformers import LlamaTokenizer, GenerationConfig
8
- from robohusky.model.modeling_husky_embody2 import HuskyForConditionalGeneration
9
- from decord import VideoReader, cpu
10
- import torchvision.transforms as T
11
- from torchvision.transforms.functional import InterpolationMode
12
  import tempfile
 
 
13
 
14
- DEFAULT_IMG_START_TOKEN = "<img>"
15
- DEFAULT_IMG_END_TOKEN = "</img>"
16
- DEFAULT_VIDEO_START_TOKEN = "<vid>"
17
- DEFAULT_VIDEO_END_TOKEN = "</vid>"
 
18
 
19
- class EndpointHandler:
20
- def __init__(self, model_path: str = "."):
21
- self.device = "cuda" if torch.cuda.is_available() else "cpu"
22
- self.tokenizer = LlamaTokenizer.from_pretrained(model_path, use_fast=False)
23
- self.model = HuskyForConditionalGeneration.from_pretrained(
24
- model_path, torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
25
- ).to(self.device).eval()
26
-
27
- self.gen_config = GenerationConfig(
28
- bos_token_id=1,
29
- do_sample=False,
30
- # temperature=0.7,
31
- max_new_tokens=10240
32
 
 
 
 
 
 
 
 
 
 
33
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
- def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
36
- inputs = self.preprocess(data)
37
- prediction = self.inference(inputs)
38
- return self.postprocess(prediction)
39
-
40
- def preprocess(self, request: Dict[str, Any]) -> Dict[str, Any]:
41
- prompt = request["inputs"]
42
- image_b64 = request.get("image", None)
43
- video_b64 = request.get("video", None)
44
-
45
- pixel_values = None
46
-
47
- if image_b64:
48
- image_bytes = base64.b64decode(image_b64)
49
- pixel_values = self._load_image(image_bytes).unsqueeze(0) # [1, 3, 224, 224]
50
- if self.device == "cuda":
51
- pixel_values = pixel_values.half()
52
- pixel_values = pixel_values.to(self.device)
53
- prompt = prompt.replace("<image>", DEFAULT_IMG_START_TOKEN + DEFAULT_IMG_END_TOKEN)
54
-
55
- elif video_b64:
56
- video_bytes = base64.b64decode(video_b64)
57
- pixel_values = self._load_video(video_bytes)
58
- if self.device == "cuda":
59
- pixel_values = pixel_values.half()
60
- pixel_values = pixel_values.to(self.device)
61
- prompt = prompt.replace("<video>", DEFAULT_VIDEO_START_TOKEN + DEFAULT_VIDEO_END_TOKEN)
62
-
63
- return {
64
- "prompt": prompt,
65
- "pixel_values": pixel_values
66
- }
67
-
68
- def inference(self, inputs: Dict[str, Any]) -> str:
69
- prompt = inputs["prompt"]
70
- pixel_values = inputs["pixel_values"]
71
-
72
- model_inputs = self.tokenizer([prompt], return_tensors="pt")
73
- model_inputs.pop("token_type_ids", None)
74
- model_inputs = {k: v.to(self.device) for k, v in model_inputs.items()}
75
-
76
- if pixel_values is not None:
77
- output = self.model.generate(
78
- **model_inputs,
79
- pixel_values=pixel_values,
80
- max_new_tokens=self.gen_config.max_new_tokens, # 👈 显式传入
81
- generation_config=self.gen_config,
82
- return_dict_in_generate=True,
83
- output_scores=True
84
- )
85
  else:
86
- output = self.model.language_model.generate(
87
- **model_inputs,
88
- generation_config=self.gen_config,
89
- return_dict_in_generate=True,
90
- output_scores=True
91
- )
92
- # 🧠 打印 debug 信息
93
- generated_ids = output.sequences[0]
94
- print("📍生成的 token ids:", generated_ids.tolist())
95
- raw_text = self.tokenizer.decode(generated_ids, skip_special_tokens=False)
96
- clean_text = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
97
- print("🧾 带特殊符号的输出:", raw_text)
98
- print("✅ 去掉特殊符号的输出:", clean_text)
99
 
100
- return clean_text # 返回干净版本
101
- def postprocess(self, output: str) -> Dict[str, str]:
102
- return {"output": output.strip()}
103
 
104
- def _load_image(self, image_bytes: bytes) -> torch.Tensor:
105
- image = Image.open(BytesIO(image_bytes)).convert('RGB')
106
- crop_pct = 224 / 256
107
- size = int(224 / crop_pct)
108
- transform = T.Compose([
109
- T.Resize(size, interpolation=InterpolationMode.BICUBIC),
110
- T.CenterCrop(224),
111
- T.ToTensor(),
112
- T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
113
- ])
114
- return transform(image)
115
 
116
- def _load_video(self, video_bytes: bytes, num_segments=8) -> torch.Tensor:
117
- with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
118
- tmpfile.write(video_bytes)
119
- video_path = tmpfile.name
120
-
121
- vr = VideoReader(video_path, ctx=cpu(0))
122
- total_frames = len(vr)
123
- indices = self.get_index(total_frames, num_segments)
124
- frames = [Image.fromarray(vr[i].asnumpy()) for i in indices]
125
-
126
- transform = T.Compose([
127
- T.Resize(224, interpolation=InterpolationMode.BICUBIC),
128
- T.CenterCrop(224),
129
- T.ToTensor(),
130
- T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
131
- ])
132
- processed = [transform(frame) for frame in frames] # each: [3, 224, 224]
133
- video_tensor = torch.stack(processed, dim=0) # [T, 3, 224, 224]
134
- video_tensor = video_tensor.permute(1, 0, 2, 3) # [3, T, 224, 224]
135
- video_tensor = video_tensor.unsqueeze(0) # [1, 3, T, 224, 224] ✅
136
- return video_tensor
137
-
138
- def get_index(self, num_frames: int, num_segments: int):
139
- if num_frames < num_segments:
140
- return list(range(num_frames)) + [num_frames - 1] * (num_segments - num_frames)
141
- interval = num_frames / num_segments
142
- return [int(interval * i) for i in range(num_segments)]
 
1
  import os
 
2
  import base64
 
 
 
 
 
 
 
 
3
  import tempfile
4
+ from inference import Chat, get_conv_template
5
+ import torch
6
 
7
+ def save_base64_to_tempfile(base64_str, suffix):
8
+ header_removed = base64_str
9
+ # 去除可能的data:image/...;base64,前缀
10
+ if ',' in base64_str:
11
+ header_removed = base64_str.split(',', 1)[1]
12
 
13
+ data = base64.b64decode(header_removed)
14
+ tmp = tempfile.NamedTemporaryFile(delete=False, suffix=suffix)
15
+ tmp.write(data)
16
+ tmp.close()
17
+ return tmp.name
 
 
 
 
 
 
 
 
18
 
19
+ class EndpointHandler:
20
+ def __init__(self, model_path: str):
21
+ device = "cuda" if torch.cuda.is_available() else "cpu"
22
+ self.chat = Chat(
23
+ model_path=model_path,
24
+ device=device,
25
+ num_gpus=1,
26
+ max_new_tokens=1024,
27
+ load_8bit=False,
28
  )
29
+ self.vision_feature = None
30
+ self.modal_type = "text"
31
+ self.chat.conv = get_conv_template("husky").copy()
32
+
33
+ def __call__(self, data: dict) -> dict:
34
+ # reset conversation if specified
35
+ if data.get("clear_history"):
36
+ self.chat.conv = get_conv_template("husky").copy()
37
+ self.vision_feature = None
38
+ self.modal_type = "text"
39
+
40
+ prompt = data.get("inputs", "")
41
+ image_input = data.get("image", None)
42
+ video_input = data.get("video", None)
43
+
44
+ # 判断image输入是路径还是base64字符串
45
+ if image_input:
46
+ if os.path.exists(image_input):
47
+ # 直接用路径
48
+ self.vision_feature = self.chat.get_image_embedding(image_input)
49
+ else:
50
+ # base64字符串,保存临时文件再处理
51
+ tmp_path = save_base64_to_tempfile(image_input, suffix=".jpg")
52
+ self.vision_feature = self.chat.get_image_embedding(tmp_path)
53
+ os.unlink(tmp_path) # 删除临时文件
54
+ self.modal_type = "image"
55
+ self.chat.conv = get_conv_template("husky").copy()
56
+
57
+ elif video_input:
58
+ if os.path.exists(video_input):
59
+ self.vision_feature = self.chat.get_video_embedding(video_input)
60
+ else:
61
+ tmp_path = save_base64_to_tempfile(video_input, suffix=".mp4")
62
+ self.vision_feature = self.chat.get_video_embedding(tmp_path)
63
+ os.unlink(tmp_path)
64
+ self.modal_type = "video"
65
+ self.chat.conv = get_conv_template("husky").copy()
66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
  else:
68
+ self.modal_type = "text"
69
+ self.vision_feature = None
 
 
 
 
 
 
 
 
 
 
 
70
 
71
+ conversations = self.chat.ask(prompt, self.chat.conv, modal_type=self.modal_type)
72
+ output = self.chat.answer(conversations, self.vision_feature, modal_type=self.modal_type)
 
73
 
74
+ # 更新对话历史
75
+ self.chat.conv.messages[-1][1] = output.strip()
 
 
 
 
 
 
 
 
 
76
 
77
+ return {"output": output.strip()}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
inference.py ADDED
@@ -0,0 +1,415 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ srun -p INTERN2 --job-name='husky_multi_test' --gres=gpu:1 --cpus-per-task=8 --quotatype="auto" python -u demo/inference_new.py
3
+ """
4
+
5
+ import abc
6
+ from typing import Optional
7
+
8
+ import os
9
+ import requests
10
+ from PIL import Image
11
+ from io import BytesIO
12
+
13
+ import torch
14
+ import torchvision.transforms as T
15
+ from peft import PeftModel
16
+ from torchvision.transforms.functional import InterpolationMode
17
+
18
+ from transformers import (
19
+ LlamaTokenizer,
20
+ GenerationConfig,
21
+ StoppingCriteria,
22
+ StoppingCriteriaList,
23
+ )
24
+
25
+ from robohusky.model.modeling_husky_embody2 import HuskyForConditionalGeneration
26
+
27
+ from robohusky.conversation import (
28
+ conv_templates,
29
+ get_conv_template,
30
+ )
31
+
32
+ from robohusky.video_transformers import (
33
+ GroupNormalize,
34
+ GroupScale,
35
+ GroupCenterCrop,
36
+ Stack,
37
+ ToTorchFormatTensor,
38
+ get_index,
39
+ )
40
+
41
+ from robohusky.compression import compress_module
42
+ from decord import VideoReader, cpu
43
+
44
+ # import deepspeed
45
+
46
+ IGNORE_INDEX = -100
47
+ DEFAULT_UNK_TOKEN = "<unk>"
48
+ DEFAULT_IMG_START_TOKEN = "<img>"
49
+ DEFAULT_IMG_END_TOKEN = "</img>"
50
+
51
+ DEFAULT_VIDEO_START_TOKEN = "<vid>"
52
+ DEFAULT_VIDEO_END_TOKEN = "</vid>"
53
+
54
+ def get_gpu_memory(max_gpus=None):
55
+ gpu_memory = []
56
+ num_gpus = (
57
+ torch.cuda.device_count()
58
+ if max_gpus is None
59
+ else min(max_gpus, torch.cuda.device_count())
60
+ )
61
+
62
+ for gpu_id in range(num_gpus):
63
+ with torch.cuda.device(gpu_id):
64
+ device = torch.cuda.current_device()
65
+ gpu_properties = torch.cuda.get_device_properties(device)
66
+ total_memory = gpu_properties.total_memory / (1024 ** 3)
67
+ allocated_memory = torch.cuda.memory_allocated() / (1024 ** 3)
68
+ available_memory = total_memory - allocated_memory
69
+ gpu_memory.append(available_memory)
70
+ return gpu_memory
71
+
72
+ def load_model(
73
+ model_path, device, num_gpus, max_gpu_memory=None, load_8bit=False, lora_weights=None
74
+ ):
75
+ if device == "cpu":
76
+ kwargs = {}
77
+ elif device == "cuda":
78
+ kwargs = {"torch_dtype": torch.float16}
79
+ if num_gpus == "auto":
80
+ kwargs["device_map"] = "auto"
81
+ else:
82
+ num_gpus = int(num_gpus)
83
+ if num_gpus != 1:
84
+ kwargs["device_map"] = "auto"
85
+ if max_gpu_memory is None:
86
+ kwargs[
87
+ "device_map"
88
+ ] = "sequential" # This is important for not the same VRAM sizes
89
+ available_gpu_memory = get_gpu_memory(num_gpus)
90
+ kwargs["max_memory"] = {
91
+ i: str(int(available_gpu_memory[i] * 0.85)) + "GiB"
92
+ for i in range(num_gpus)
93
+ }
94
+ else:
95
+ kwargs["max_memory"] = {i: max_gpu_memory for i in range(num_gpus)}
96
+ else:
97
+ raise ValueError(f"Invalid device: {device}")
98
+
99
+ tokenizer = LlamaTokenizer.from_pretrained(
100
+ model_path, use_fast=False)
101
+
102
+ if lora_weights is None:
103
+ model = HuskyForConditionalGeneration.from_pretrained(
104
+ model_path, low_cpu_mem_usage=True, **kwargs
105
+ )
106
+ else:
107
+ kwargs["device_map"] = "auto"
108
+ model = HuskyForConditionalGeneration.from_pretrained(
109
+ model_path, low_cpu_mem_usage=True, **kwargs
110
+ )
111
+ model.language_model = PeftModel.from_pretrained(
112
+ model.language_model,
113
+ lora_weights,
114
+ **kwargs
115
+ )
116
+
117
+ if load_8bit:
118
+ compress_module(model, device)
119
+
120
+ if (device == "cuda" and num_gpus == 1) or device == "mps":
121
+ model.to(device)
122
+
123
+ model = model.eval()
124
+ return model, tokenizer
125
+
126
+ def load_image(image_file, input_size=224):
127
+ if image_file.startswith('http') or image_file.startswith('https'):
128
+ response = requests.get(image_file)
129
+ image = Image.open(BytesIO(response.content)).convert('RGB')
130
+ else:
131
+ image = Image.open(image_file).convert('RGB')
132
+
133
+ crop_pct = 224 / 256
134
+ size = int(input_size / crop_pct)
135
+ transform = T.Compose([
136
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
137
+ T.Resize(size, interpolation=InterpolationMode.BICUBIC),
138
+ T.CenterCrop(input_size),
139
+ T.ToTensor(),
140
+ T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
141
+ ])
142
+ image = transform(image)
143
+ return image
144
+
145
+ def load_video(video_path, num_segments=8):
146
+ vr = VideoReader(video_path, ctx=cpu(0))
147
+ num_frames = len(vr)
148
+ frame_indices = get_index(num_frames, num_segments)
149
+
150
+ # transform
151
+ crop_size = 224
152
+ scale_size = 224
153
+ input_mean = [0.48145466, 0.4578275, 0.40821073]
154
+ input_std = [0.26862954, 0.26130258, 0.27577711]
155
+
156
+ transform = T.Compose([
157
+ GroupScale(int(scale_size), interpolation=InterpolationMode.BICUBIC),
158
+ GroupCenterCrop(crop_size),
159
+ Stack(),
160
+ ToTorchFormatTensor(),
161
+ GroupNormalize(input_mean, input_std)
162
+ ])
163
+
164
+ images_group = list()
165
+ for frame_index in frame_indices:
166
+ img = Image.fromarray(vr[frame_index].asnumpy())
167
+ images_group.append(img)
168
+ video = transform(images_group)
169
+ return video
170
+
171
+ class StoppingCriteriaSub(StoppingCriteria):
172
+
173
+ def __init__(self, stops, encounters=1):
174
+ super().__init__()
175
+ self.stops = stops
176
+
177
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs):
178
+ for stop in self.stops:
179
+ if torch.all((stop == input_ids[0][-len(stop):])).item():
180
+ return True
181
+
182
+ return False
183
+
184
+ @torch.inference_mode()
185
+ def generate_stream(
186
+ model, tokenizer, image_processor, params, device
187
+ ):
188
+ prompt = params["prompt"]
189
+ images = params.get("images", None)
190
+ videos = params.get("videos", None)
191
+ temperature = float(params.get("temperature", 0.7))
192
+ max_new_tokens = int(params.get("max_new_tokens", 1024))
193
+
194
+ num_queries = model.config.num_query_tokens
195
+
196
+ stop_words = ["Human: ", "Assistant: ", "###", "\n\n"]
197
+ stop_words_ids = [tokenizer(stop_word, return_tensors='pt')['input_ids'].squeeze() for stop_word in stop_words]
198
+ stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
199
+
200
+ generation_config = GenerationConfig(
201
+ bos_token_id=1,
202
+ do_sample=True,
203
+ temperature=temperature,
204
+ max_new_tokens=max_new_tokens,
205
+ stopping_criteria=stopping_criteria
206
+ )
207
+
208
+ pixel_values = None
209
+ if images is not None:
210
+ pixel_values = load_image(images).to(device) # only support one image
211
+ image_query = DEFAULT_IMG_START_TOKEN + DEFAULT_IMG_END_TOKEN
212
+ prompt = prompt.replace("<image>", image_query)
213
+
214
+ elif videos is not None:
215
+ pixel_values = load_video(videos).to(device)
216
+ video_query = DEFAULT_VIDEO_START_TOKEN + DEFAULT_VIDEO_END_TOKEN
217
+ prompt = prompt.replace("<video>", video_query)
218
+
219
+ model_inputs = tokenizer([prompt], return_tensors="pt")
220
+ model_inputs.pop("token_type_ids", None)
221
+
222
+ if pixel_values is not None:
223
+ model_inputs["pixel_values"] = pixel_values
224
+
225
+ generation_output = model.generate(
226
+ **model_inputs,
227
+ generation_config=generation_config,
228
+ return_dict_in_generate=True,
229
+ output_scores=True
230
+ )
231
+ else:
232
+ generation_output = model.language_model.generate(
233
+ **model_inputs,
234
+ generation_config=generation_config,
235
+ return_dict_in_generate=True,
236
+ output_scores=True
237
+ )
238
+
239
+ preds = generation_output.sequences
240
+ outputs = tokenizer.batch_decode(preds, skip_special_tokens=True)
241
+ return outputs
242
+
243
+ class Chat:
244
+ def __init__(
245
+ self,
246
+ model_path,
247
+ device,
248
+ num_gpus=1,
249
+ load_8bit=False,
250
+ temperature=0.7,
251
+ max_new_tokens=512,
252
+ lora_path=None,
253
+ ):
254
+ model, tokenizer = load_model(
255
+ model_path, device, num_gpus, load_8bit=load_8bit, lora_weights=lora_path
256
+ )
257
+
258
+ self.model = model
259
+ # self.model.language_model = deepspeed.init_inference(
260
+ # self.model.language_model, mp_size=1, dtype=torch.float16, checkpoint=None, replace_with_kernel_inject=True)
261
+ self.tokenizer = tokenizer
262
+ num_queries = model.config.num_query_tokens
263
+
264
+ self.device = device
265
+ self.dtype = model.dtype
266
+
267
+ stop_words = ["Human: ", "Assistant: ", "###", "\n\n"]
268
+ stop_words_ids = [tokenizer(stop_word, return_tensors='pt')['input_ids'].squeeze() for stop_word in stop_words]
269
+ stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
270
+
271
+ self.conv = get_conv_template("husky")
272
+
273
+ self.image_query = DEFAULT_IMG_START_TOKEN + DEFAULT_IMG_END_TOKEN
274
+ self.video_query = DEFAULT_VIDEO_START_TOKEN + DEFAULT_VIDEO_END_TOKEN
275
+
276
+ self.generation_config = GenerationConfig(
277
+ bos_token_id=1,
278
+ do_sample=True,
279
+ top_k=20,
280
+ top_p=0.9,
281
+ temperature=temperature,
282
+ max_new_tokens=max_new_tokens,
283
+ stopping_criteria=stopping_criteria
284
+ )
285
+
286
+ def ask(self, text, conv, modal_type="image"):
287
+ assert modal_type in ["text", "image", "video"]
288
+ conversations = []
289
+
290
+ if len(conv.messages) > 0 or modal_type == "text":
291
+ conv.append_message(conv.roles[0], text)
292
+ elif modal_type == "image":
293
+ conv.append_message(conv.roles[0], self.image_query + "\n" + text)
294
+ else:
295
+ conv.append_message(conv.roles[0], self.video_query + "\n" + text)
296
+
297
+ conv.append_message(conv.roles[1], None)
298
+ conversations.append(conv.get_prompt())
299
+ return conversations
300
+
301
+ @torch.no_grad()
302
+ def get_image_embedding(self, image_file):
303
+ pixel_values = load_image(image_file)
304
+ pixel_values = pixel_values.unsqueeze(0).to(self.device, dtype=self.dtype)
305
+ language_model_inputs = self.model.extract_feature(pixel_values)
306
+ return language_model_inputs
307
+
308
+ @torch.no_grad()
309
+ def get_video_embedding(self, video_file):
310
+ pixel_values = load_video(video_file)
311
+ TC, H, W = pixel_values.shape
312
+ pixel_values = pixel_values.reshape(TC // 3, 3, H, W).transpose(0, 1) # [C, T, H, W]
313
+ pixel_values = pixel_values.unsqueeze(0).to(self.device, dtype=self.dtype)
314
+ assert len(pixel_values.shape) == 5
315
+ language_model_inputs = self.model.extract_feature(pixel_values)
316
+ return language_model_inputs
317
+
318
+ @torch.no_grad()
319
+ def answer(self, conversations, language_model_inputs, modal_type="image"):
320
+ model_inputs = self.tokenizer(
321
+ conversations,
322
+ return_tensors="pt",
323
+ )
324
+ model_inputs.pop("token_type_ids", None)
325
+
326
+ input_ids = model_inputs["input_ids"].to(self.device)
327
+ attention_mask = model_inputs["attention_mask"].to(self.device)
328
+
329
+ if modal_type == "text":
330
+ generation_output = self.model.language_model.generate(
331
+ input_ids=input_ids,
332
+ attention_mask=attention_mask,
333
+ generation_config=self.generation_config,
334
+ return_dict_in_generate=True,
335
+ output_scores=True
336
+ )
337
+ else:
338
+ pixel_values = model_inputs.pop("pixel_values", None)
339
+ if pixel_values is not None:
340
+ pixel_values = pixel_values.to(self.device)
341
+
342
+ generation_output = self.model.generate(
343
+ pixel_values=pixel_values,
344
+ input_ids=input_ids,
345
+ attention_mask=attention_mask,
346
+ language_model_inputs=language_model_inputs,
347
+ generation_config=self.generation_config,
348
+ return_dict_in_generate=True,
349
+ output_scores=True
350
+ )
351
+
352
+ preds = generation_output.sequences
353
+ outputs = self.tokenizer.batch_decode(preds, skip_special_tokens=True)[0]
354
+
355
+ if modal_type == "text":
356
+ skip_echo_len = len(conversations[0]) - conversations[0].count("</s>") * 3
357
+ outputs = outputs[skip_echo_len:].strip()
358
+
359
+ return outputs
360
+
361
+ if __name__ == '__main__':
362
+ # model_path = "/mnt/petrelfs/zhangqinglong/Documents/Husky/work_dirs/husky_v3/EmbodiedGPT/pretrain_0727"
363
+ model_path = "./"
364
+ device = "cuda" if torch.cuda.is_available() else "cpu"
365
+ chat = Chat(model_path, device=device, num_gpus=1, max_new_tokens=1024, load_8bit=False)
366
+
367
+ vision_feature = None
368
+ image_state = False
369
+ video_state = False
370
+
371
+ while True:
372
+ query = input("\n")
373
+ if query.lower().endswith(('.bmp', '.dib', '.png', '.jpg', '.jpeg', '.pbm', '.pgm', '.ppm', '.tif', '.tiff')):
374
+ if os.path.exists(query):
375
+ print("received.")
376
+ vision_feature = chat.get_image_embedding(query)
377
+ chat.conv = get_conv_template("husky").copy()
378
+ image_state = True
379
+ continue
380
+ if query.lower().endswith(('.mp4', '.mkv', '.avi', '.wmv', '.iso', ".webm")):
381
+ if os.path.exists(query):
382
+ print("received.")
383
+ vision_feature = chat.get_video_embedding(query)
384
+ chat.conv = get_conv_template("husky").copy()
385
+ video_state = True
386
+ continue
387
+
388
+ if query == "stop":
389
+ break
390
+ if query == "clear" or query == "" or query == "\n":
391
+ chat.conv = get_conv_template("husky").copy()
392
+ image_state = False
393
+ video_state = False
394
+ os.system("clear")
395
+ print("欢迎使用 husky-13b-zh 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序")
396
+ continue
397
+
398
+ if image_state:
399
+ modal_type = "image"
400
+ elif video_state:
401
+ modal_type = "video"
402
+ else:
403
+ modal_type = "text"
404
+
405
+ # image_test = "assets/husky.jpg"
406
+ # image_test = "assets/yoga.mp4"
407
+ # video_test = "assets/pretty_girl.mp4"
408
+ # video_test = "assets/stock-footage-billiards-concentrated-young-woman-playing-in-club.webm"
409
+ # video_test = "assets/stock-footage-kherson-ukraine-may-open-free-rock-music-festival-crowd-partying-at-a-rock-concert.webm"
410
+ conversations = chat.ask(text=query, conv=chat.conv, modal_type=modal_type)
411
+ outputs = chat.answer(conversations, vision_feature, modal_type=modal_type)
412
+ # NOTE: strip is important to align with the training data.
413
+ chat.conv.messages[-1][1] = outputs.strip()
414
+
415
+ print(f"Husky: \n{outputs}")