ccclemenfff commited on
Commit
73085ab
·
1 Parent(s): 8b2c047
Files changed (3) hide show
  1. .idea/.name +1 -1
  2. handler.py +113 -6
  3. inference.py +0 -415
.idea/.name CHANGED
@@ -1 +1 @@
1
- inference.py
 
1
+ handler.py
handler.py CHANGED
@@ -1,9 +1,116 @@
1
- from inference import Chat # 你的模型类
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  class EndpointHandler:
4
- def __init__(self, path="."):
5
- self.chat = Chat()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
- def __call__(self, data):
8
- inputs = data.get("inputs", data)
9
- return {"results": self.chat.answer(inputs)}
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ from PIL import Image
4
+ from io import BytesIO
5
+ from typing import Dict, Any
6
+ from transformers import LlamaTokenizer, GenerationConfig
7
+ from robohusky.model.modeling_husky_embody2 import HuskyForConditionalGeneration
8
+ from robohusky.video_transformers import (
9
+ GroupNormalize, GroupScale, GroupCenterCrop,
10
+ Stack, ToTorchFormatTensor, get_index
11
+ )
12
+ from decord import VideoReader, cpu
13
+ import torchvision.transforms as T
14
+ from torchvision.transforms.functional import InterpolationMode
15
+
16
+ DEFAULT_IMG_START_TOKEN = "<img>"
17
+ DEFAULT_IMG_END_TOKEN = "</img>"
18
+ DEFAULT_VIDEO_START_TOKEN = "<vid>"
19
+ DEFAULT_VIDEO_END_TOKEN = "</vid>"
20
 
21
  class EndpointHandler:
22
+ def __init__(self, model_path: str = "."):
23
+ self.device = "cuda" if torch.cuda.is_available() else "cpu"
24
+ self.tokenizer = LlamaTokenizer.from_pretrained(model_path, use_fast=False)
25
+ self.model = HuskyForConditionalGeneration.from_pretrained(
26
+ model_path, torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
27
+ ).to(self.device).eval()
28
+
29
+ self.gen_config = GenerationConfig(
30
+ bos_token_id=1,
31
+ do_sample=True,
32
+ temperature=0.7,
33
+ max_new_tokens=1024
34
+ )
35
+
36
+ def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
37
+ # Hugging Face 会调用这个函数,data 是原始输入
38
+ inputs = self.preprocess(data)
39
+ prediction = self.inference(inputs)
40
+ return self.postprocess(prediction)
41
+
42
+ def preprocess(self, request: Dict[str, Any]) -> Dict[str, Any]:
43
+ prompt = request["inputs"]
44
+ image = request.get("image", None)
45
+ video = request.get("video", None)
46
+
47
+ if image:
48
+ pixel_values = self._load_image(image).unsqueeze(0).to(self.device)
49
+ prompt = prompt.replace("<image>", DEFAULT_IMG_START_TOKEN + DEFAULT_IMG_END_TOKEN)
50
+ elif video:
51
+ pixel_values = self._load_video(video).unsqueeze(0).to(self.device)
52
+ prompt = prompt.replace("<video>", DEFAULT_VIDEO_START_TOKEN + DEFAULT_VIDEO_END_TOKEN)
53
+ else:
54
+ pixel_values = None
55
+
56
+ return {
57
+ "prompt": prompt,
58
+ "pixel_values": pixel_values
59
+ }
60
+
61
+ def inference(self, inputs: Dict[str, Any]) -> str:
62
+ prompt = inputs["prompt"]
63
+ pixel_values = inputs["pixel_values"]
64
+
65
+ model_inputs = self.tokenizer([prompt], return_tensors="pt")
66
+ model_inputs.pop("token_type_ids", None)
67
+ model_inputs = {k: v.to(self.device) for k, v in model_inputs.items()}
68
+
69
+ if pixel_values is not None:
70
+ output = self.model.generate(
71
+ **model_inputs,
72
+ pixel_values=pixel_values,
73
+ generation_config=self.gen_config,
74
+ return_dict_in_generate=True,
75
+ output_scores=True
76
+ )
77
+ else:
78
+ output = self.model.language_model.generate(
79
+ **model_inputs,
80
+ generation_config=self.gen_config,
81
+ return_dict_in_generate=True,
82
+ output_scores=True
83
+ )
84
+
85
+ return self.tokenizer.decode(output.sequences[0], skip_special_tokens=True)
86
+
87
+ def postprocess(self, output: str) -> Dict[str, str]:
88
+ return {"output": output.strip()}
89
+
90
+ def _load_image(self, image_bytes: bytes) -> torch.Tensor:
91
+ image = Image.open(BytesIO(image_bytes)).convert('RGB')
92
+ crop_pct = 224 / 256
93
+ size = int(224 / crop_pct)
94
+ transform = T.Compose([
95
+ T.Resize(size, interpolation=InterpolationMode.BICUBIC),
96
+ T.CenterCrop(224),
97
+ T.ToTensor(),
98
+ T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
99
+ ])
100
+ return transform(image)
101
+
102
+ def _load_video(self, video_bytes: bytes, num_segments=8) -> torch.Tensor:
103
+ with open("/tmp/temp_video.mp4", "wb") as f:
104
+ f.write(video_bytes)
105
+ vr = VideoReader("/tmp/temp_video.mp4", ctx=cpu(0))
106
+ frame_indices = get_index(len(vr), num_segments)
107
+ frames = [Image.fromarray(vr[idx].asnumpy()) for idx in frame_indices]
108
 
109
+ transform = T.Compose([
110
+ GroupScale(224),
111
+ GroupCenterCrop(224),
112
+ Stack(),
113
+ ToTorchFormatTensor(),
114
+ GroupNormalize([0.48145466, 0.4578275, 0.40821073], [0.26862954, 0.26130258, 0.27577711])
115
+ ])
116
+ return transform(frames)
inference.py DELETED
@@ -1,415 +0,0 @@
1
- """
2
- srun -p INTERN2 --job-name='husky_multi_test' --gres=gpu:1 --cpus-per-task=8 --quotatype="auto" python -u demo/inference_new.py
3
- """
4
-
5
- import abc
6
- from typing import Optional
7
-
8
- import os
9
- import requests
10
- from PIL import Image
11
- from io import BytesIO
12
-
13
- import torch
14
- import torchvision.transforms as T
15
- from peft import PeftModel
16
- from torchvision.transforms.functional import InterpolationMode
17
-
18
- from transformers import (
19
- LlamaTokenizer,
20
- GenerationConfig,
21
- StoppingCriteria,
22
- StoppingCriteriaList,
23
- )
24
-
25
- from robohusky.model.modeling_husky_embody2 import HuskyForConditionalGeneration
26
-
27
- from robohusky.conversation import (
28
- conv_templates,
29
- get_conv_template,
30
- )
31
-
32
- from robohusky.video_transformers import (
33
- GroupNormalize,
34
- GroupScale,
35
- GroupCenterCrop,
36
- Stack,
37
- ToTorchFormatTensor,
38
- get_index,
39
- )
40
-
41
- from robohusky.compression import compress_module
42
- from decord import VideoReader, cpu
43
-
44
- # import deepspeed
45
-
46
- IGNORE_INDEX = -100
47
- DEFAULT_UNK_TOKEN = "<unk>"
48
- DEFAULT_IMG_START_TOKEN = "<img>"
49
- DEFAULT_IMG_END_TOKEN = "</img>"
50
-
51
- DEFAULT_VIDEO_START_TOKEN = "<vid>"
52
- DEFAULT_VIDEO_END_TOKEN = "</vid>"
53
-
54
- def get_gpu_memory(max_gpus=None):
55
- gpu_memory = []
56
- num_gpus = (
57
- torch.cuda.device_count()
58
- if max_gpus is None
59
- else min(max_gpus, torch.cuda.device_count())
60
- )
61
-
62
- for gpu_id in range(num_gpus):
63
- with torch.cuda.device(gpu_id):
64
- device = torch.cuda.current_device()
65
- gpu_properties = torch.cuda.get_device_properties(device)
66
- total_memory = gpu_properties.total_memory / (1024 ** 3)
67
- allocated_memory = torch.cuda.memory_allocated() / (1024 ** 3)
68
- available_memory = total_memory - allocated_memory
69
- gpu_memory.append(available_memory)
70
- return gpu_memory
71
-
72
- def load_model(
73
- model_path, device, num_gpus, max_gpu_memory=None, load_8bit=False, lora_weights=None
74
- ):
75
- if device == "cpu":
76
- kwargs = {}
77
- elif device == "cuda":
78
- kwargs = {"torch_dtype": torch.float16}
79
- if num_gpus == "auto":
80
- kwargs["device_map"] = "auto"
81
- else:
82
- num_gpus = int(num_gpus)
83
- if num_gpus != 1:
84
- kwargs["device_map"] = "auto"
85
- if max_gpu_memory is None:
86
- kwargs[
87
- "device_map"
88
- ] = "sequential" # This is important for not the same VRAM sizes
89
- available_gpu_memory = get_gpu_memory(num_gpus)
90
- kwargs["max_memory"] = {
91
- i: str(int(available_gpu_memory[i] * 0.85)) + "GiB"
92
- for i in range(num_gpus)
93
- }
94
- else:
95
- kwargs["max_memory"] = {i: max_gpu_memory for i in range(num_gpus)}
96
- else:
97
- raise ValueError(f"Invalid device: {device}")
98
-
99
- tokenizer = LlamaTokenizer.from_pretrained(
100
- model_path, use_fast=False)
101
-
102
- if lora_weights is None:
103
- model = HuskyForConditionalGeneration.from_pretrained(
104
- model_path, low_cpu_mem_usage=True, **kwargs
105
- )
106
- else:
107
- kwargs["device_map"] = "auto"
108
- model = HuskyForConditionalGeneration.from_pretrained(
109
- model_path, low_cpu_mem_usage=True, **kwargs
110
- )
111
- model.language_model = PeftModel.from_pretrained(
112
- model.language_model,
113
- lora_weights,
114
- **kwargs
115
- )
116
-
117
- if load_8bit:
118
- compress_module(model, device)
119
-
120
- if (device == "cuda" and num_gpus == 1) or device == "mps":
121
- model.to(device)
122
-
123
- model = model.eval()
124
- return model, tokenizer
125
-
126
- def load_image(image_file, input_size=224):
127
- if image_file.startswith('http') or image_file.startswith('https'):
128
- response = requests.get(image_file)
129
- image = Image.open(BytesIO(response.content)).convert('RGB')
130
- else:
131
- image = Image.open(image_file).convert('RGB')
132
-
133
- crop_pct = 224 / 256
134
- size = int(input_size / crop_pct)
135
- transform = T.Compose([
136
- T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
137
- T.Resize(size, interpolation=InterpolationMode.BICUBIC),
138
- T.CenterCrop(input_size),
139
- T.ToTensor(),
140
- T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
141
- ])
142
- image = transform(image)
143
- return image
144
-
145
- def load_video(video_path, num_segments=8):
146
- vr = VideoReader(video_path, ctx=cpu(0))
147
- num_frames = len(vr)
148
- frame_indices = get_index(num_frames, num_segments)
149
-
150
- # transform
151
- crop_size = 224
152
- scale_size = 224
153
- input_mean = [0.48145466, 0.4578275, 0.40821073]
154
- input_std = [0.26862954, 0.26130258, 0.27577711]
155
-
156
- transform = T.Compose([
157
- GroupScale(int(scale_size), interpolation=InterpolationMode.BICUBIC),
158
- GroupCenterCrop(crop_size),
159
- Stack(),
160
- ToTorchFormatTensor(),
161
- GroupNormalize(input_mean, input_std)
162
- ])
163
-
164
- images_group = list()
165
- for frame_index in frame_indices:
166
- img = Image.fromarray(vr[frame_index].asnumpy())
167
- images_group.append(img)
168
- video = transform(images_group)
169
- return video
170
-
171
- class StoppingCriteriaSub(StoppingCriteria):
172
-
173
- def __init__(self, stops, encounters=1):
174
- super().__init__()
175
- self.stops = stops
176
-
177
- def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs):
178
- for stop in self.stops:
179
- if torch.all((stop == input_ids[0][-len(stop):])).item():
180
- return True
181
-
182
- return False
183
-
184
- @torch.inference_mode()
185
- def generate_stream(
186
- model, tokenizer, image_processor, params, device
187
- ):
188
- prompt = params["prompt"]
189
- images = params.get("images", None)
190
- videos = params.get("videos", None)
191
- temperature = float(params.get("temperature", 0.7))
192
- max_new_tokens = int(params.get("max_new_tokens", 1024))
193
-
194
- num_queries = model.config.num_query_tokens
195
-
196
- stop_words = ["Human: ", "Assistant: ", "###", "\n\n"]
197
- stop_words_ids = [tokenizer(stop_word, return_tensors='pt')['input_ids'].squeeze() for stop_word in stop_words]
198
- stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
199
-
200
- generation_config = GenerationConfig(
201
- bos_token_id=1,
202
- do_sample=True,
203
- temperature=temperature,
204
- max_new_tokens=max_new_tokens,
205
- stopping_criteria=stopping_criteria
206
- )
207
-
208
- pixel_values = None
209
- if images is not None:
210
- pixel_values = load_image(images).to(device) # only support one image
211
- image_query = DEFAULT_IMG_START_TOKEN + DEFAULT_IMG_END_TOKEN
212
- prompt = prompt.replace("<image>", image_query)
213
-
214
- elif videos is not None:
215
- pixel_values = load_video(videos).to(device)
216
- video_query = DEFAULT_VIDEO_START_TOKEN + DEFAULT_VIDEO_END_TOKEN
217
- prompt = prompt.replace("<video>", video_query)
218
-
219
- model_inputs = tokenizer([prompt], return_tensors="pt")
220
- model_inputs.pop("token_type_ids", None)
221
-
222
- if pixel_values is not None:
223
- model_inputs["pixel_values"] = pixel_values
224
-
225
- generation_output = model.generate(
226
- **model_inputs,
227
- generation_config=generation_config,
228
- return_dict_in_generate=True,
229
- output_scores=True
230
- )
231
- else:
232
- generation_output = model.language_model.generate(
233
- **model_inputs,
234
- generation_config=generation_config,
235
- return_dict_in_generate=True,
236
- output_scores=True
237
- )
238
-
239
- preds = generation_output.sequences
240
- outputs = tokenizer.batch_decode(preds, skip_special_tokens=True)
241
- return outputs
242
-
243
- class Chat:
244
- def __init__(
245
- self,
246
- model_path,
247
- device,
248
- num_gpus=1,
249
- load_8bit=False,
250
- temperature=0.7,
251
- max_new_tokens=512,
252
- lora_path=None,
253
- ):
254
- model, tokenizer = load_model(
255
- model_path, device, num_gpus, load_8bit=load_8bit, lora_weights=lora_path
256
- )
257
-
258
- self.model = model
259
- # self.model.language_model = deepspeed.init_inference(
260
- # self.model.language_model, mp_size=1, dtype=torch.float16, checkpoint=None, replace_with_kernel_inject=True)
261
- self.tokenizer = tokenizer
262
- num_queries = model.config.num_query_tokens
263
-
264
- self.device = device
265
- self.dtype = model.dtype
266
-
267
- stop_words = ["Human: ", "Assistant: ", "###", "\n\n"]
268
- stop_words_ids = [tokenizer(stop_word, return_tensors='pt')['input_ids'].squeeze() for stop_word in stop_words]
269
- stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
270
-
271
- self.conv = get_conv_template("husky")
272
-
273
- self.image_query = DEFAULT_IMG_START_TOKEN + DEFAULT_IMG_END_TOKEN
274
- self.video_query = DEFAULT_VIDEO_START_TOKEN + DEFAULT_VIDEO_END_TOKEN
275
-
276
- self.generation_config = GenerationConfig(
277
- bos_token_id=1,
278
- do_sample=True,
279
- top_k=20,
280
- top_p=0.9,
281
- temperature=temperature,
282
- max_new_tokens=max_new_tokens,
283
- stopping_criteria=stopping_criteria
284
- )
285
-
286
- def ask(self, text, conv, modal_type="image"):
287
- assert modal_type in ["text", "image", "video"]
288
- conversations = []
289
-
290
- if len(conv.messages) > 0 or modal_type == "text":
291
- conv.append_message(conv.roles[0], text)
292
- elif modal_type == "image":
293
- conv.append_message(conv.roles[0], self.image_query + "\n" + text)
294
- else:
295
- conv.append_message(conv.roles[0], self.video_query + "\n" + text)
296
-
297
- conv.append_message(conv.roles[1], None)
298
- conversations.append(conv.get_prompt())
299
- return conversations
300
-
301
- @torch.no_grad()
302
- def get_image_embedding(self, image_file):
303
- pixel_values = load_image(image_file)
304
- pixel_values = pixel_values.unsqueeze(0).to(self.device, dtype=self.dtype)
305
- language_model_inputs = self.model.extract_feature(pixel_values)
306
- return language_model_inputs
307
-
308
- @torch.no_grad()
309
- def get_video_embedding(self, video_file):
310
- pixel_values = load_video(video_file)
311
- TC, H, W = pixel_values.shape
312
- pixel_values = pixel_values.reshape(TC // 3, 3, H, W).transpose(0, 1) # [C, T, H, W]
313
- pixel_values = pixel_values.unsqueeze(0).to(self.device, dtype=self.dtype)
314
- assert len(pixel_values.shape) == 5
315
- language_model_inputs = self.model.extract_feature(pixel_values)
316
- return language_model_inputs
317
-
318
- @torch.no_grad()
319
- def answer(self, conversations, language_model_inputs, modal_type="image"):
320
- model_inputs = self.tokenizer(
321
- conversations,
322
- return_tensors="pt",
323
- )
324
- model_inputs.pop("token_type_ids", None)
325
-
326
- input_ids = model_inputs["input_ids"].to(self.device)
327
- attention_mask = model_inputs["attention_mask"].to(self.device)
328
-
329
- if modal_type == "text":
330
- generation_output = self.model.language_model.generate(
331
- input_ids=input_ids,
332
- attention_mask=attention_mask,
333
- generation_config=self.generation_config,
334
- return_dict_in_generate=True,
335
- output_scores=True
336
- )
337
- else:
338
- pixel_values = model_inputs.pop("pixel_values", None)
339
- if pixel_values is not None:
340
- pixel_values = pixel_values.to(self.device)
341
-
342
- generation_output = self.model.generate(
343
- pixel_values=pixel_values,
344
- input_ids=input_ids,
345
- attention_mask=attention_mask,
346
- language_model_inputs=language_model_inputs,
347
- generation_config=self.generation_config,
348
- return_dict_in_generate=True,
349
- output_scores=True
350
- )
351
-
352
- preds = generation_output.sequences
353
- outputs = self.tokenizer.batch_decode(preds, skip_special_tokens=True)[0]
354
-
355
- if modal_type == "text":
356
- skip_echo_len = len(conversations[0]) - conversations[0].count("</s>") * 3
357
- outputs = outputs[skip_echo_len:].strip()
358
-
359
- return outputs
360
-
361
- if __name__ == '__main__':
362
- # model_path = "/mnt/petrelfs/zhangqinglong/Documents/Husky/work_dirs/husky_v3/EmbodiedGPT/pretrain_0727"
363
- model_path = "./"
364
- device = "cuda" if torch.cuda.is_available() else "cpu"
365
- chat = Chat(model_path, device=device, num_gpus=1, max_new_tokens=1024, load_8bit=False)
366
-
367
- vision_feature = None
368
- image_state = False
369
- video_state = False
370
-
371
- while True:
372
- query = input("\n")
373
- if query.lower().endswith(('.bmp', '.dib', '.png', '.jpg', '.jpeg', '.pbm', '.pgm', '.ppm', '.tif', '.tiff')):
374
- if os.path.exists(query):
375
- print("received.")
376
- vision_feature = chat.get_image_embedding(query)
377
- chat.conv = get_conv_template("husky").copy()
378
- image_state = True
379
- continue
380
- if query.lower().endswith(('.mp4', '.mkv', '.avi', '.wmv', '.iso', ".webm")):
381
- if os.path.exists(query):
382
- print("received.")
383
- vision_feature = chat.get_video_embedding(query)
384
- chat.conv = get_conv_template("husky").copy()
385
- video_state = True
386
- continue
387
-
388
- if query == "stop":
389
- break
390
- if query == "clear" or query == "" or query == "\n":
391
- chat.conv = get_conv_template("husky").copy()
392
- image_state = False
393
- video_state = False
394
- os.system("clear")
395
- print("欢迎使用 husky-13b-zh 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序")
396
- continue
397
-
398
- if image_state:
399
- modal_type = "image"
400
- elif video_state:
401
- modal_type = "video"
402
- else:
403
- modal_type = "text"
404
-
405
- # image_test = "assets/husky.jpg"
406
- # image_test = "assets/yoga.mp4"
407
- # video_test = "assets/pretty_girl.mp4"
408
- # video_test = "assets/stock-footage-billiards-concentrated-young-woman-playing-in-club.webm"
409
- # video_test = "assets/stock-footage-kherson-ukraine-may-open-free-rock-music-festival-crowd-partying-at-a-rock-concert.webm"
410
- conversations = chat.ask(text=query, conv=chat.conv, modal_type=modal_type)
411
- outputs = chat.answer(conversations, vision_feature, modal_type=modal_type)
412
- # NOTE: strip is important to align with the training data.
413
- chat.conv.messages[-1][1] = outputs.strip()
414
-
415
- print(f"Husky: \n{outputs}")