#!/usr/bin/env python # coding=utf-8 # Copyright Qing-Long Zhang. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for sequence to sequence. """ import json import logging import os import sys import warnings from functools import partial from multiprocessing import cpu_count from typing import Optional from dataclasses import dataclass, field from torch.utils.data import Dataset, ConcatDataset from datasets import load_dataset, load_from_disk from robohusky.dist_utils import init_dist from robohusky.model.modeling_husky_embody2 import HuskyForConditionalGeneration import transformers from transformers import ( HfArgumentParser, TrainingArguments, LlamaTokenizer, Trainer, set_seed, default_data_collator, DataCollatorForSeq2Seq, ) from peft import ( LoraConfig, get_peft_model, prepare_model_for_int8_training, ) from robohusky.base_dataset_uni import ( process_func, BaseDataset, WeightedConcatDataset ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version from transformers.utils.logging import ( set_verbosity_info, set_verbosity, enable_default_handler, enable_explicit_format, ) from robohusky.train.llama_flash_attn_monkey_patch import ( replace_llama_attn_with_flash_attn ) from robohusky.train.llama_rmsnorm_monkey_patch import ( replace_llama_rmsnorm_with_fused_rmsnorm ) replace_llama_attn_with_flash_attn() replace_llama_rmsnorm_with_fused_rmsnorm() IGNORE_INDEX = -100 DEFAULT_UNK_TOKEN = "" DEFAULT_IMG_START_TOKEN = "" DEFAULT_IMG_END_TOKEN = "" DEFAULT_VIDEO_START_TOKEN = "" DEFAULT_VIDEO_END_TOKEN = "" # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.32.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/translation/requirements.txt") warnings.filterwarnings('ignore') logger = logging.getLogger(__name__) os.environ["WANDB_DISABLED"] = "true" os.environ["TOKENIZERS_PARALLELISM"] = "true" @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=False, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) use_auth_token: bool = field( default=False, metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) }, ) freeze_model: bool = field( default=False, metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."}, ) freeze_vision_model: bool = field( default=False, metadata={"help": "Will enable to load a pretrained vision model whose head dimensions are different."}, ) freeze_vision_adapter: bool = field( default=False, metadata={"help": "Will enable to load a pretrained vision adapter whose head dimensions are different."}, ) freeze_text_model: bool = field( default=False, metadata={"help": "Will enable to load a pretrained text model whose head dimensions are different."}, ) freeze_qformer: bool = field( default=False, metadata={"help": "Will enable to load a pretrained qformer model whose head dimensions are different."}, ) un_freeze_vision_embedding: bool = field( default=False, metadata={"help": "Will enable to tuning image patch_embedding when vision_model are frozen"}, ) un_freeze_video_embedding: bool = field( default=False, metadata={"help": "Will enable to tuning video patch_embedding when vision_model are frozen"}, ) un_freeze_llm_head: bool = field( default=False, metadata={"help": "Will enable to tuning video patch_embedding when vision_model are frozen"}, ) use_lora: bool = field( default=False, metadata={"help": "add the LoRA adapters to the base model"} ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) data_dir: Optional[str] = field( default=None, metadata={"help": "The data directory containing input files."}) train_file: Optional[str] = field( default=None, metadata={"help": "The input training data file (a jsonlines)."}) validation_file: Optional[str] = field( default=None, metadata={ "help": "An optional input evaluation data file to evaluate the metrics (sacrebleu) on a jsonlines file." }, ) train_val_split: Optional[float] = field( default=0.0, metadata={"help": "Percent to split off of train for validation."} ) test_file: Optional[str] = field( default=None, metadata={"help": "An optional input test data file to evaluate the metrics (sacrebleu) on a jsonlines file."}, ) image_path: Optional[str] = field( default=None, metadata={"help": "An optional image path"}, ) video_path: Optional[str] = field( default=None, metadata={"help": "An optional video path"}, ) input_size: Optional[int] = field( default=224, metadata={"help": "The input size of images."}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) max_seq_length: Optional[int] = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) pad_to_max_length: bool = field( default=False, metadata={ "help": ( "Whether to pad all samples to model maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) }, ) val_max_length: Optional[int] = field( default=None, metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`." "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) }, ) conv_style: Optional[str] = field( default=None, metadata={"help": "prompt style for a conversation."} ) save_data_path: Optional[str] = field( default=None, metadata={"help": "prompt style for a conversation."} ) num_beams: Optional[int] = field( default=None, metadata={ "help": ( "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, " "which is used during ``evaluate`` and ``predict``." ) }, ) ignore_pad_token_for_loss: bool = field( default=True, metadata={ "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not." }, ) source_prefix: Optional[str] = field( default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."} ) forced_bos_token: Optional[str] = field( default=None, metadata={ "help": ( "The token to force as the first generated token after the :obj:`decoder_start_token_id`.Useful for" " multilingual models like :doc:`mBART <../model_doc/mbart>` where the first generated token needs to" " be the target language token.(Usually it is the target language token)" ) }, ) def __post_init__(self): if self.dataset_name is None and self.train_file is None and self.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") # accepting both json and jsonl file extensions, as # many jsonlines files actually have a .json extension else: if self.train_file is not None: extension = self.train_file.split(".")[-1] assert extension in ["csv", "json", "jsonl", "parquet"], "`train_file` should be a csv or a json file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension in ["csv", "json", "jsonl", "parquet"], "`validation_file` should be a csv or a json file." if self.test_file is not None: extension = self.test_file.split(".")[-1] assert extension == "json", "`test_file` should be a json file." def main(): # 1. Parse input arguments # See all possible arguments in src/transformers/training_args.py parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) init_dist(launcher='slurm', backend='nccl', port=29598) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script, and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # 2. Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() log_level = training_args.get_process_log_level() logger.setLevel(log_level) set_verbosity(log_level) enable_default_handler() enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) logger.info(f"Training/evaluation parameters {training_args}") # 3. Detecting last checkpoint and eventually continue from last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed) # 4. Get the datasets # you can either provide your own JSON training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. ds = load_dataset( data_args.dataset_name, data_args.dataset_config_name, data_dir=data_args.data_dir, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file extension = data_args.train_file.split(".")[-1] if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.validation_file.split(".")[-1] if data_args.test_file is not None: data_files["test"] = data_args.test_file extension = data_args.test_file.split(".")[-1] # ds = load_dataset( # "json" if extension == "jsonl" else extension, # data_files=data_files, # split="train" # ) ds = json.load(open(data_args.train_file, "r")) # 5. Load pretrained model, tokenizer, and image processor # # Distributed training: The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. tokenizer = LlamaTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, legacy=True, ) # add special token tokenizer.pad_token_id = 0 if tokenizer.unk_token is None: tokenizer.add_special_tokens({"unk_token": DEFAULT_UNK_TOKEN}) tokens_list = [ DEFAULT_IMG_START_TOKEN, DEFAULT_IMG_END_TOKEN, DEFAULT_VIDEO_START_TOKEN, DEFAULT_VIDEO_END_TOKEN ] tokenizer.add_tokens(tokens_list, special_tokens=True) model = HuskyForConditionalGeneration.from_pretrained( model_args.model_name_or_path, ignore_mismatched_sizes=True ) embedding_size = model.language_model.get_input_embeddings().weight.shape[0] # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch # on a small vocab and want a smaller embedding size, remove this test. if len(tokenizer) > embedding_size: model.resize_token_embeddings(len(tokenizer)) model.language_model.resize_token_embeddings(len(tokenizer)) model.config.text_config.vocab_size = len(tokenizer) model.config.use_cache = False def _freeze_params(module): for param in module.parameters(): param.requires_grad = False if model_args.freeze_model: _freeze_params(model) # only update language projection model.language_projection.weight.requires_grad = True if model_args.freeze_vision_model: model.vision_model = model.vision_model.eval() _freeze_params(model.vision_model) if model_args.freeze_vision_adapter: _freeze_params(model.vision_adapter) if model_args.freeze_qformer: model.qformer = model.qformer.eval() _freeze_params(model.qformer) model.query_tokens.requires_grad = False if model_args.freeze_text_model: _freeze_params(model.language_model) if model_args.use_lora: training_args.ddp_find_unused_parameters = False _freeze_params(model) lora_config = LoraConfig( r=16, target_modules=["q_proj", "v_proj"], lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) model.language_model = get_peft_model(model.language_model, lora_config) model.language_model.print_trainable_parameters() if model_args.un_freeze_video_embedding: _freeze_params(model) model.vision_model.video_embeddings.patch_embedding.weight.requires_grad = True model.vision_model.video_embeddings.class_embedding.requires_grad = True model.vision_model.video_embeddings.position_embedding.requires_grad = True if model_args.un_freeze_llm_head: model.language_model.lm_head.weight.requires_grad = True # set seed for torch dataloaders set_seed(training_args.seed) # 7. Preprocessing the datasets. # We need to tokenize input captions and transform the images. # set padding. padding = "max_length" if data_args.pad_to_max_length else False def husky_processor(examples): processor = partial( process_func, tokenizer=tokenizer, max_seq_length=data_args.max_seq_length, ) model_inputs = processor(examples) return model_inputs # Data collator label_pad_token_id = IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id if data_args.pad_to_max_length: data_collator = default_data_collator else: data_collator = DataCollatorForSeq2Seq( tokenizer, model=model, label_pad_token_id=label_pad_token_id, pad_to_multiple_of=8 if training_args.fp16 else None, ) concat_dataset = [] weights = [] batch_size = training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size for data in ds: data_name = data['data_name'] data_file = data["text_file"] extension = data_file.split(".")[-1] extension = "json" if extension == "jsonl" else extension logger.info(f"Loading dataset: {data_name}") raw_dataset = load_dataset(extension, data_files=data_file, num_proc=cpu_count(), split="train") raw_dataset = raw_dataset.shuffle(seed=0) max_train_sample = min(len(raw_dataset), batch_size * (len(raw_dataset) // batch_size)) raw_dataset = raw_dataset.select(range(max_train_sample)) media_type = data["data_type"] input_size = data_args.video_size if media_type == "video" else data_args.input_size temp = BaseDataset( raw_dataset, processor=husky_processor, image_path=data["image_path"], input_size=input_size, num_segments=8, norm_type="openai", media_type=media_type ) concat_dataset.append(temp) weights.append(1 / len(temp)) logger.info(f"All datasets have been loaded!") if len(concat_dataset) > 1: train_dataset = WeightedConcatDataset(datasets=concat_dataset, weights=weights, batch_size=batch_size) else: train_dataset = concat_dataset[0] # 8. Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=None, tokenizer=tokenizer, data_collator=data_collator, ) # 9. Training if training_args.do_train: checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) if model_args.use_lora: model.language_model.save_pretrained(training_args.output_dir) else: trainer.save_model() # Saves the tokenizer too for easy upload metrics = train_result.metrics max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) ) metrics["train_samples"] = min(max_train_samples, len(train_dataset)) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() if __name__ == "__main__": main()