File size: 2,170 Bytes
05dcf8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
base_model:
- princeton-nlp/Llama-3-8B-ProLong-512k-Instruct
license: apache-2.0
language:
- en
datasets:
- chtmp223/CLIPPER
---
# ProLong-512k-8B-CLIPPER
ProLong-512k-8B-CLIPPER is a fine-tuned version of princeton-nlp/Llama-3-8B-ProLong-512k-Instruct using supervised finetuning over chtmp223/CLIPPER dataset.
Please check [our paper](https://arxiv.org/abs/2502.14854) for more details on the method.
## π Model Details
### Model Description
- **Language(s) (NLP):** English
- **License:** Apache-2.0
- **Finetuned from model:** princeton-nlp/Llama-3-8B-ProLong-512k-Instruct](https://huggingface.co/princeton-nlp/Llama-3-8B-ProLong-512k-Instruct)
### Model Sources
- **Repository:** [Github repository](https://github.com/chtmp223/CLIPPER).
- **Paper:** [https://arxiv.org/abs/2502.14854](https://arxiv.org/abs/2502.14854)
## π» Training Details
### Training Data
[chtmp223/CLIPPER](https://huggingface.co/datasets/chtmp223/CLIPPER)
### Training Procedure
| **Configurations** | **Values** |
|----------------------------------|--------------|
| Hardware (Training and Inference)| 8xA100s |
| Tracking | wandb |
| batch size | 16 |
| gradient_checkpointing | True |
| learning_rate | 1.0e-6 |
| lr_scheduler_type | cosine |
| max_length | 131072 |
| num_train_epochs | 1 |
| optim | adamw_torch |
#### Software
Training code is adapted from [https://github.com/princeton-nlp/ProLong](https://github.com/princeton-nlp/ProLong).
## π€ Inference
Inference is done with [vLLM](https://github.com/vllm-project/vllm) on 1 A100-80GB.
## π Citation
```
@misc{pham2025clippercompressionenableslongcontext,
title={CLIPPER: Compression enables long-context synthetic data generation},
author={Chau Minh Pham and Yapei Chang and Mohit Iyyer},
year={2025},
eprint={2502.14854},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2502.14854},
}
``` |