Upload folder using huggingface_hub
Browse files- .gitattributes +2 -0
- README.md +74 -0
- added_tokens.json +40 -0
- config.json +13 -0
- config.py +94 -0
- configuration_moondream.py +96 -0
- fourier_features.py +18 -0
- generation_config.json +4 -0
- handler.py +58 -0
- hf_moondream.py +183 -0
- image_crops.py +231 -0
- layers.py +166 -0
- lora.py +82 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- moondream.py +986 -0
- moondream2-mmproj-f16.gguf +3 -0
- moondream2-text-model-f16.gguf +3 -0
- region.py +136 -0
- region_model.py +43 -0
- requirements.txt +3 -0
- rope.py +48 -0
- special_tokens_map.json +5 -0
- text.py +221 -0
- tokenizer.json +0 -0
- tokenizer_config.json +323 -0
- utils.py +41 -0
- versions.txt +12 -0
- vision.py +147 -0
- vision_encoder.py +325 -0
- vocab.json +0 -0
- weights.py +292 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
moondream2-mmproj-f16.gguf filter=lfs diff=lfs merge=lfs -text
|
37 |
+
moondream2-text-model-f16.gguf filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
pipeline_tag: image-text-to-text
|
4 |
+
---
|
5 |
+
|
6 |
+
Moondream is a small vision language model designed to run efficiently everywhere.
|
7 |
+
|
8 |
+
[Website](https://moondream.ai/) / [Demo](https://moondream.ai/playground) / [GitHub](https://github.com/vikhyat/moondream)
|
9 |
+
|
10 |
+
This repository contains the latest (**2025-06-21**) release of Moondream, as well as [historical releases](https://huggingface.co/vikhyatk/moondream2/blob/main/versions.txt). The model is updated frequently, so we recommend specifying a revision as shown below if you're using it in a production application.
|
11 |
+
|
12 |
+
|
13 |
+
### Usage
|
14 |
+
|
15 |
+
```python
|
16 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
17 |
+
from PIL import Image
|
18 |
+
|
19 |
+
model = AutoModelForCausalLM.from_pretrained(
|
20 |
+
"vikhyatk/moondream2",
|
21 |
+
revision="2025-06-21",
|
22 |
+
trust_remote_code=True,
|
23 |
+
device_map={"": "cuda"} # ...or 'mps', on Apple Silicon
|
24 |
+
)
|
25 |
+
|
26 |
+
# Captioning
|
27 |
+
print("Short caption:")
|
28 |
+
print(model.caption(image, length="short")["caption"])
|
29 |
+
|
30 |
+
print("\nNormal caption:")
|
31 |
+
for t in model.caption(image, length="normal", stream=True)["caption"]:
|
32 |
+
# Streaming generation example, supported for caption() and detect()
|
33 |
+
print(t, end="", flush=True)
|
34 |
+
print(model.caption(image, length="normal"))
|
35 |
+
|
36 |
+
# Visual Querying
|
37 |
+
print("\nVisual query: 'How many people are in the image?'")
|
38 |
+
print(model.query(image, "How many people are in the image?")["answer"])
|
39 |
+
|
40 |
+
# Object Detection
|
41 |
+
print("\nObject detection: 'face'")
|
42 |
+
objects = model.detect(image, "face")["objects"]
|
43 |
+
print(f"Found {len(objects)} face(s)")
|
44 |
+
|
45 |
+
# Pointing
|
46 |
+
print("\nPointing: 'person'")
|
47 |
+
points = model.point(image, "person")["points"]
|
48 |
+
print(f"Found {len(points)} person(s)")
|
49 |
+
```
|
50 |
+
|
51 |
+
### Changelog
|
52 |
+
|
53 |
+
**2025-06-21**
|
54 |
+
|
55 |
+
(release notes coming soon)
|
56 |
+
|
57 |
+
**2025-04-15** ([full release notes](https://moondream.ai/blog/moondream-2025-04-14-release))
|
58 |
+
|
59 |
+
1. Improved chart understanding (ChartQA up from 74.8 to 77.5, 82.2 with PoT)
|
60 |
+
2. Added temperature and nucleus sampling to reduce repetitive outputs
|
61 |
+
3. Better OCR for documents and tables (prompt with “Transcribe the text” or “Transcribe the text in natural reading order”)
|
62 |
+
4. Object detection supports document layout detection (figure, formula, text, etc)
|
63 |
+
5. UI understanding (ScreenSpot F1\@0.5 up from 53.3 to 60.3)
|
64 |
+
6. Improved text understanding (DocVQA up from 76.5 to 79.3, TextVQA up from 74.6 to 76.3)
|
65 |
+
|
66 |
+
**2025-03-27** ([full release notes](https://moondream.ai/blog/moondream-2025-03-27-release))
|
67 |
+
|
68 |
+
1. Added support for long-form captioning
|
69 |
+
2. Open vocabulary image tagging
|
70 |
+
3. Improved counting accuracy (e.g. CountBenchQA increased from 80 to 86.4)
|
71 |
+
4. Improved text understanding (e.g. OCRBench increased from 58.3 to 61.2)
|
72 |
+
5. Improved object detection, especially for small objects (e.g. COCO up from 30.5 to 51.2)
|
73 |
+
6. Fixed token streaming bug affecting multi-byte unicode characters
|
74 |
+
7. gpt-fast style `compile()` now supported in HF Transformers implementation
|
added_tokens.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"\t\t": 50294,
|
3 |
+
"\t\t\t": 50293,
|
4 |
+
"\t\t\t\t": 50292,
|
5 |
+
"\t\t\t\t\t": 50291,
|
6 |
+
"\t\t\t\t\t\t": 50290,
|
7 |
+
"\t\t\t\t\t\t\t": 50289,
|
8 |
+
"\t\t\t\t\t\t\t\t": 50288,
|
9 |
+
"\t\t\t\t\t\t\t\t\t": 50287,
|
10 |
+
" ": 50286,
|
11 |
+
" ": 50285,
|
12 |
+
" ": 50284,
|
13 |
+
" ": 50283,
|
14 |
+
" ": 50282,
|
15 |
+
" ": 50281,
|
16 |
+
" ": 50280,
|
17 |
+
" ": 50279,
|
18 |
+
" ": 50278,
|
19 |
+
" ": 50277,
|
20 |
+
" ": 50276,
|
21 |
+
" ": 50275,
|
22 |
+
" ": 50274,
|
23 |
+
" ": 50273,
|
24 |
+
" ": 50272,
|
25 |
+
" ": 50271,
|
26 |
+
" ": 50270,
|
27 |
+
" ": 50269,
|
28 |
+
" ": 50268,
|
29 |
+
" ": 50267,
|
30 |
+
" ": 50266,
|
31 |
+
" ": 50265,
|
32 |
+
" ": 50264,
|
33 |
+
" ": 50263,
|
34 |
+
" ": 50262,
|
35 |
+
" ": 50261,
|
36 |
+
" ": 50260,
|
37 |
+
" ": 50259,
|
38 |
+
" ": 50258,
|
39 |
+
" ": 50257
|
40 |
+
}
|
config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"HfMoondream"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "hf_moondream.HfConfig",
|
7 |
+
"AutoModelForCausalLM": "hf_moondream.HfMoondream"
|
8 |
+
},
|
9 |
+
"config": {},
|
10 |
+
"model_type": "moondream1",
|
11 |
+
"torch_dtype": "bfloat16",
|
12 |
+
"transformers_version": "4.52.4"
|
13 |
+
}
|
config.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass, field
|
2 |
+
from typing import Dict, List, Optional
|
3 |
+
|
4 |
+
|
5 |
+
@dataclass(frozen=True)
|
6 |
+
class TextConfig:
|
7 |
+
dim: int = 2048
|
8 |
+
ff_dim: int = 8192
|
9 |
+
n_layers: int = 24
|
10 |
+
vocab_size: int = 51200
|
11 |
+
max_context: int = 2048
|
12 |
+
n_heads: int = 32
|
13 |
+
n_kv_heads: int = 32
|
14 |
+
prefix_attn: int = 730
|
15 |
+
group_size: Optional[int] = None
|
16 |
+
|
17 |
+
|
18 |
+
@dataclass(frozen=True)
|
19 |
+
class VisionConfig:
|
20 |
+
enc_dim: int = 1152
|
21 |
+
enc_patch_size: int = 14
|
22 |
+
enc_n_layers: int = 27
|
23 |
+
enc_ff_dim: int = 4304
|
24 |
+
enc_n_heads: int = 16
|
25 |
+
proj_out_dim: int = 2048
|
26 |
+
crop_size: int = 378
|
27 |
+
in_channels: int = 3
|
28 |
+
max_crops: int = 12
|
29 |
+
overlap_margin: int = 4
|
30 |
+
proj_inner_dim: int = 8192
|
31 |
+
|
32 |
+
|
33 |
+
@dataclass(frozen=True)
|
34 |
+
class RegionConfig:
|
35 |
+
dim: int = 2048
|
36 |
+
coord_feat_dim: int = 256
|
37 |
+
coord_out_dim: int = 1024
|
38 |
+
size_feat_dim: int = 512
|
39 |
+
size_out_dim: int = 2048
|
40 |
+
inner_dim: int = 8192
|
41 |
+
group_size: Optional[int] = None
|
42 |
+
|
43 |
+
|
44 |
+
@dataclass(frozen=True)
|
45 |
+
class TokenizerConfig:
|
46 |
+
bos_id: int = 0
|
47 |
+
eos_id: int = 0
|
48 |
+
answer_id: int = 3
|
49 |
+
thinking_id: int = 4
|
50 |
+
coord_id: int = 5
|
51 |
+
size_id: int = 6
|
52 |
+
start_ground_points_id: int = 7
|
53 |
+
end_ground_id: int = 9
|
54 |
+
templates: Dict[str, Optional[Dict[str, List[int]]]] = field(
|
55 |
+
default_factory=lambda: {
|
56 |
+
"caption": {
|
57 |
+
"short": [1, 32708, 2, 12492, 3],
|
58 |
+
"normal": [1, 32708, 2, 6382, 3],
|
59 |
+
"long": [1, 32708, 2, 4059, 3],
|
60 |
+
},
|
61 |
+
"query": {"prefix": [1, 15381, 2], "suffix": [3]},
|
62 |
+
"detect": {"prefix": [1, 7235, 476, 2], "suffix": [3]},
|
63 |
+
"point": {"prefix": [1, 2581, 2], "suffix": [3]},
|
64 |
+
}
|
65 |
+
)
|
66 |
+
|
67 |
+
|
68 |
+
@dataclass(frozen=True)
|
69 |
+
class MoondreamConfig:
|
70 |
+
text: TextConfig = TextConfig()
|
71 |
+
vision: VisionConfig = VisionConfig()
|
72 |
+
region: RegionConfig = RegionConfig()
|
73 |
+
tokenizer: TokenizerConfig = TokenizerConfig()
|
74 |
+
|
75 |
+
@classmethod
|
76 |
+
def from_dict(cls, config_dict: dict):
|
77 |
+
text_config = TextConfig(**config_dict.get("text", {}))
|
78 |
+
vision_config = VisionConfig(**config_dict.get("vision", {}))
|
79 |
+
region_config = RegionConfig(**config_dict.get("region", {}))
|
80 |
+
tokenizer_config = TokenizerConfig(**config_dict.get("tokenizer", {}))
|
81 |
+
return cls(
|
82 |
+
text=text_config,
|
83 |
+
vision=vision_config,
|
84 |
+
region=region_config,
|
85 |
+
tokenizer=tokenizer_config,
|
86 |
+
)
|
87 |
+
|
88 |
+
def to_dict(self):
|
89 |
+
return {
|
90 |
+
"text": self.text.__dict__,
|
91 |
+
"vision": self.vision.__dict__,
|
92 |
+
"region": self.region.__dict__,
|
93 |
+
"tokenizer": self.tokenizer.__dict__,
|
94 |
+
}
|
configuration_moondream.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class PhiConfig(PretrainedConfig):
|
5 |
+
model_type = "phi"
|
6 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
vocab_size=51200,
|
11 |
+
hidden_size=2048,
|
12 |
+
intermediate_size=8192,
|
13 |
+
num_hidden_layers=24,
|
14 |
+
num_attention_heads=32,
|
15 |
+
num_key_value_heads=None,
|
16 |
+
resid_pdrop=0.0,
|
17 |
+
embd_pdrop=0.0,
|
18 |
+
attention_dropout=0.0,
|
19 |
+
hidden_act="gelu_new",
|
20 |
+
max_position_embeddings=2048,
|
21 |
+
initializer_range=0.02,
|
22 |
+
layer_norm_eps=1e-5,
|
23 |
+
use_cache=True,
|
24 |
+
tie_word_embeddings=False,
|
25 |
+
rope_theta=10000.0,
|
26 |
+
rope_scaling=None,
|
27 |
+
partial_rotary_factor=0.5,
|
28 |
+
bos_token_id=1,
|
29 |
+
eos_token_id=2,
|
30 |
+
**kwargs,
|
31 |
+
):
|
32 |
+
self.vocab_size = vocab_size
|
33 |
+
self.hidden_size = hidden_size
|
34 |
+
self.intermediate_size = intermediate_size
|
35 |
+
self.num_hidden_layers = num_hidden_layers
|
36 |
+
self.num_attention_heads = num_attention_heads
|
37 |
+
|
38 |
+
if num_key_value_heads is None:
|
39 |
+
num_key_value_heads = num_attention_heads
|
40 |
+
|
41 |
+
self.num_key_value_heads = num_key_value_heads
|
42 |
+
self.resid_pdrop = resid_pdrop
|
43 |
+
self.embd_pdrop = embd_pdrop
|
44 |
+
self.attention_dropout = attention_dropout
|
45 |
+
self.hidden_act = hidden_act
|
46 |
+
self.max_position_embeddings = max_position_embeddings
|
47 |
+
self.initializer_range = initializer_range
|
48 |
+
self.layer_norm_eps = layer_norm_eps
|
49 |
+
self.use_cache = use_cache
|
50 |
+
self.rope_theta = rope_theta
|
51 |
+
self.rope_scaling = rope_scaling
|
52 |
+
self.partial_rotary_factor = partial_rotary_factor
|
53 |
+
self._rope_scaling_validation()
|
54 |
+
|
55 |
+
super().__init__(
|
56 |
+
bos_token_id=bos_token_id,
|
57 |
+
eos_token_id=eos_token_id,
|
58 |
+
tie_word_embeddings=tie_word_embeddings,
|
59 |
+
**kwargs,
|
60 |
+
)
|
61 |
+
|
62 |
+
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
|
63 |
+
def _rope_scaling_validation(self):
|
64 |
+
"""
|
65 |
+
Validate the `rope_scaling` configuration.
|
66 |
+
"""
|
67 |
+
if self.rope_scaling is None:
|
68 |
+
return
|
69 |
+
|
70 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
71 |
+
raise ValueError(
|
72 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
73 |
+
f"got {self.rope_scaling}"
|
74 |
+
)
|
75 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
76 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
77 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
78 |
+
raise ValueError(
|
79 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
80 |
+
)
|
81 |
+
if (
|
82 |
+
rope_scaling_factor is None
|
83 |
+
or not isinstance(rope_scaling_factor, float)
|
84 |
+
or rope_scaling_factor <= 1.0
|
85 |
+
):
|
86 |
+
raise ValueError(
|
87 |
+
f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}"
|
88 |
+
)
|
89 |
+
|
90 |
+
|
91 |
+
class MoondreamConfig(PretrainedConfig):
|
92 |
+
model_type = "moondream1"
|
93 |
+
|
94 |
+
def __init__(self, **kwargs):
|
95 |
+
self.text_config = PhiConfig(**kwargs.pop("text_config", {}))
|
96 |
+
super().__init__(**kwargs)
|
fourier_features.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adopted from https://github.com/crowsonkb/k-diffusion/blob/transformer-model-v2/k_diffusion/layers.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import math
|
6 |
+
|
7 |
+
|
8 |
+
class FourierFeatures(nn.Module):
|
9 |
+
def __init__(self, in_features, out_features, std=1.0):
|
10 |
+
super().__init__()
|
11 |
+
assert out_features % 2 == 0
|
12 |
+
self.register_buffer(
|
13 |
+
"weight", torch.randn([out_features // 2, in_features]) * std
|
14 |
+
)
|
15 |
+
|
16 |
+
def forward(self, input):
|
17 |
+
f = 2 * math.pi * input @ self.weight.T
|
18 |
+
return torch.cat([f.cos(), f.sin()], dim=-1)
|
generation_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.44.0"
|
4 |
+
}
|
handler.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from io import BytesIO
|
5 |
+
import base64
|
6 |
+
|
7 |
+
class EndpointHandler:
|
8 |
+
def __init__(self, model_dir):
|
9 |
+
self.model_id = "vikhyatk/moondream2"
|
10 |
+
self.model = AutoModelForCausalLM.from_pretrained(self.model_id, trust_remote_code=True)
|
11 |
+
self.tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2", trust_remote_code=True)
|
12 |
+
|
13 |
+
# Check if CUDA (GPU support) is available and then set the device to GPU or CPU
|
14 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
self.model.to(self.device)
|
16 |
+
|
17 |
+
def preprocess_image(self, encoded_image):
|
18 |
+
"""Decode and preprocess the input image."""
|
19 |
+
decoded_image = base64.b64decode(encoded_image)
|
20 |
+
img = Image.open(BytesIO(decoded_image)).convert("RGB")
|
21 |
+
return img
|
22 |
+
|
23 |
+
def __call__(self, data):
|
24 |
+
"""Handle the incoming request."""
|
25 |
+
try:
|
26 |
+
# Extract the inputs from the data
|
27 |
+
inputs = data.pop("inputs", data)
|
28 |
+
input_image = inputs['image']
|
29 |
+
question = inputs.get('question', "move to the red ball")
|
30 |
+
|
31 |
+
# Preprocess the image
|
32 |
+
img = self.preprocess_image(input_image)
|
33 |
+
|
34 |
+
# Perform inference
|
35 |
+
enc_image = self.model.encode_image(img).to(self.device)
|
36 |
+
answer = self.model.answer_question(enc_image, question, self.tokenizer)
|
37 |
+
|
38 |
+
# If the output is a tensor, move it back to CPU and convert to list
|
39 |
+
if isinstance(answer, torch.Tensor):
|
40 |
+
answer = answer.cpu().numpy().tolist()
|
41 |
+
|
42 |
+
# Create the response
|
43 |
+
response = {
|
44 |
+
"statusCode": 200,
|
45 |
+
"body": {
|
46 |
+
"answer": answer
|
47 |
+
}
|
48 |
+
}
|
49 |
+
return response
|
50 |
+
except Exception as e:
|
51 |
+
# Handle any errors
|
52 |
+
response = {
|
53 |
+
"statusCode": 500,
|
54 |
+
"body": {
|
55 |
+
"error": str(e)
|
56 |
+
}
|
57 |
+
}
|
58 |
+
return response
|
hf_moondream.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
5 |
+
from typing import Union
|
6 |
+
|
7 |
+
from .config import MoondreamConfig
|
8 |
+
from .moondream import MoondreamModel
|
9 |
+
|
10 |
+
# Files sometimes don't get loaded without these...
|
11 |
+
from .image_crops import *
|
12 |
+
from .vision import *
|
13 |
+
from .text import *
|
14 |
+
from .region import *
|
15 |
+
from .utils import *
|
16 |
+
|
17 |
+
|
18 |
+
def extract_question(text):
|
19 |
+
prefix = "<image>\n\nQuestion: "
|
20 |
+
suffix = "\n\nAnswer:"
|
21 |
+
|
22 |
+
if text.startswith(prefix) and text.endswith(suffix):
|
23 |
+
return text[len(prefix) : -len(suffix)]
|
24 |
+
else:
|
25 |
+
return None
|
26 |
+
|
27 |
+
|
28 |
+
class HfConfig(PretrainedConfig):
|
29 |
+
_auto_class = "AutoConfig"
|
30 |
+
model_type = "moondream1"
|
31 |
+
|
32 |
+
def __init__(self, **kwargs):
|
33 |
+
super().__init__(**kwargs)
|
34 |
+
self.config = {}
|
35 |
+
|
36 |
+
|
37 |
+
class HfMoondream(PreTrainedModel):
|
38 |
+
_auto_class = "AutoModelForCausalLM"
|
39 |
+
config_class = HfConfig
|
40 |
+
|
41 |
+
def __init__(self, config):
|
42 |
+
super().__init__(config)
|
43 |
+
self.model = MoondreamModel(
|
44 |
+
MoondreamConfig.from_dict(config.config), setup_caches=False
|
45 |
+
)
|
46 |
+
self._is_kv_cache_setup = False
|
47 |
+
|
48 |
+
def _setup_caches(self):
|
49 |
+
if not self._is_kv_cache_setup:
|
50 |
+
self.model._setup_caches()
|
51 |
+
self._is_kv_cache_setup = True
|
52 |
+
|
53 |
+
@property
|
54 |
+
def encode_image(self):
|
55 |
+
self._setup_caches()
|
56 |
+
return self.model.encode_image
|
57 |
+
|
58 |
+
@property
|
59 |
+
def query(self):
|
60 |
+
self._setup_caches()
|
61 |
+
return self.model.query
|
62 |
+
|
63 |
+
@property
|
64 |
+
def caption(self):
|
65 |
+
self._setup_caches()
|
66 |
+
return self.model.caption
|
67 |
+
|
68 |
+
@property
|
69 |
+
def detect(self):
|
70 |
+
self._setup_caches()
|
71 |
+
return self.model.detect
|
72 |
+
|
73 |
+
@property
|
74 |
+
def point(self):
|
75 |
+
self._setup_caches()
|
76 |
+
return self.model.point
|
77 |
+
|
78 |
+
@property
|
79 |
+
def detect_gaze(self):
|
80 |
+
self._setup_caches()
|
81 |
+
return self.model.detect_gaze
|
82 |
+
|
83 |
+
def answer_question(
|
84 |
+
self,
|
85 |
+
image_embeds,
|
86 |
+
question,
|
87 |
+
tokenizer=None,
|
88 |
+
chat_history="",
|
89 |
+
result_queue=None,
|
90 |
+
max_new_tokens=256,
|
91 |
+
**kwargs
|
92 |
+
):
|
93 |
+
answer = self.query(image_embeds, question)["answer"].strip()
|
94 |
+
|
95 |
+
if result_queue is not None:
|
96 |
+
result_queue.put(answer)
|
97 |
+
return answer
|
98 |
+
|
99 |
+
def batch_answer(self, images, prompts, tokenizer=None, **kwargs):
|
100 |
+
answers = []
|
101 |
+
for image, prompt in zip(images, prompts):
|
102 |
+
answers.append(self.query(image, prompt)["answer"].strip())
|
103 |
+
return answers
|
104 |
+
|
105 |
+
def _unsupported_exception(self):
|
106 |
+
raise NotImplementedError(
|
107 |
+
"This method is not supported in the latest version of moondream. "
|
108 |
+
"Consider upgrading to the updated API spec, or alternately pin "
|
109 |
+
"to 'revision=2024-08-26'."
|
110 |
+
)
|
111 |
+
|
112 |
+
def generate(self, image_embeds, prompt, tokenizer, max_new_tokens=128, **kwargs):
|
113 |
+
"""
|
114 |
+
Function definition remains unchanged for backwards compatibility.
|
115 |
+
Be aware that tokenizer, max_new_takens, and kwargs are ignored.
|
116 |
+
"""
|
117 |
+
prompt_extracted = extract_question(prompt)
|
118 |
+
if prompt_extracted is not None:
|
119 |
+
answer = self.model.query(
|
120 |
+
image=image_embeds, question=prompt_extracted, stream=False
|
121 |
+
)["answer"]
|
122 |
+
else:
|
123 |
+
image_embeds = self.encode_image(image_embeds)
|
124 |
+
prompt_tokens = torch.tensor(
|
125 |
+
[self.model.tokenizer.encode(prompt).ids],
|
126 |
+
device=self.device,
|
127 |
+
)
|
128 |
+
|
129 |
+
def generator():
|
130 |
+
for token in self.model._generate_answer(
|
131 |
+
prompt_tokens,
|
132 |
+
image_embeds.kv_cache,
|
133 |
+
image_embeds.pos,
|
134 |
+
max_new_tokens,
|
135 |
+
):
|
136 |
+
yield token
|
137 |
+
|
138 |
+
answer = "".join(list(generator()))
|
139 |
+
|
140 |
+
return [answer]
|
141 |
+
|
142 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
143 |
+
"""
|
144 |
+
Lazily wrap the raw parameter `self.model.text.wte` in a real
|
145 |
+
`nn.Embedding` layer so that HF mix-ins recognise it. The wrapper
|
146 |
+
**shares** the weight tensor—no copy is made.
|
147 |
+
"""
|
148 |
+
if not hasattr(self, "_input_embeddings"):
|
149 |
+
self._input_embeddings = nn.Embedding.from_pretrained(
|
150 |
+
self.model.text.wte, # tensor created in text.py
|
151 |
+
freeze=True, # set to False if you need it trainable
|
152 |
+
)
|
153 |
+
return self._input_embeddings
|
154 |
+
|
155 |
+
def set_input_embeddings(self, value: Union[nn.Embedding, nn.Module]) -> None:
|
156 |
+
"""
|
157 |
+
Lets HF functions (e.g. `resize_token_embeddings`) replace or resize the
|
158 |
+
embeddings and keeps everything tied to `self.model.text.wte`.
|
159 |
+
"""
|
160 |
+
# 1. point the low-level parameter to the new weight matrix
|
161 |
+
self.model.text.wte = value.weight
|
162 |
+
# 2. keep a reference for get_input_embeddings()
|
163 |
+
self._input_embeddings = value
|
164 |
+
|
165 |
+
def input_embeds(
|
166 |
+
self,
|
167 |
+
input_ids: Union[torch.LongTensor, list, tuple],
|
168 |
+
*,
|
169 |
+
device: torch.device | None = None
|
170 |
+
) -> torch.FloatTensor:
|
171 |
+
"""
|
172 |
+
Back-compat wrapper that turns token IDs into embeddings.
|
173 |
+
|
174 |
+
Example:
|
175 |
+
ids = torch.tensor([[1, 2, 3]])
|
176 |
+
embeds = model.input_embeds(ids) # (1, 3, hidden_dim)
|
177 |
+
"""
|
178 |
+
if not torch.is_tensor(input_ids):
|
179 |
+
input_ids = torch.as_tensor(input_ids)
|
180 |
+
if device is not None:
|
181 |
+
input_ids = input_ids.to(device)
|
182 |
+
|
183 |
+
return self.get_input_embeddings()(input_ids)
|
image_crops.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from typing import TypedDict
|
6 |
+
|
7 |
+
try:
|
8 |
+
import pyvips
|
9 |
+
|
10 |
+
HAS_VIPS = True
|
11 |
+
except:
|
12 |
+
from PIL import Image
|
13 |
+
|
14 |
+
HAS_VIPS = False
|
15 |
+
|
16 |
+
|
17 |
+
def select_tiling(
|
18 |
+
height: int, width: int, crop_size: int, max_crops: int
|
19 |
+
) -> tuple[int, int]:
|
20 |
+
"""
|
21 |
+
Determine the optimal number of tiles to cover an image with overlapping crops.
|
22 |
+
"""
|
23 |
+
if height <= crop_size or width <= crop_size:
|
24 |
+
return (1, 1)
|
25 |
+
|
26 |
+
# Minimum required tiles in each dimension
|
27 |
+
min_h = math.ceil(height / crop_size)
|
28 |
+
min_w = math.ceil(width / crop_size)
|
29 |
+
|
30 |
+
# If minimum required tiles exceed max_crops, return proportional distribution
|
31 |
+
if min_h * min_w > max_crops:
|
32 |
+
ratio = math.sqrt(max_crops / (min_h * min_w))
|
33 |
+
return (max(1, math.floor(min_h * ratio)), max(1, math.floor(min_w * ratio)))
|
34 |
+
|
35 |
+
# Perfect aspect-ratio tiles that satisfy max_crops
|
36 |
+
h_tiles = math.floor(math.sqrt(max_crops * height / width))
|
37 |
+
w_tiles = math.floor(math.sqrt(max_crops * width / height))
|
38 |
+
|
39 |
+
# Ensure we meet minimum tile requirements
|
40 |
+
h_tiles = max(h_tiles, min_h)
|
41 |
+
w_tiles = max(w_tiles, min_w)
|
42 |
+
|
43 |
+
# If we exceeded max_crops, scale down the larger dimension
|
44 |
+
if h_tiles * w_tiles > max_crops:
|
45 |
+
if w_tiles > h_tiles:
|
46 |
+
w_tiles = math.floor(max_crops / h_tiles)
|
47 |
+
else:
|
48 |
+
h_tiles = math.floor(max_crops / w_tiles)
|
49 |
+
|
50 |
+
return (max(1, h_tiles), max(1, w_tiles))
|
51 |
+
|
52 |
+
|
53 |
+
class OverlapCropOutput(TypedDict):
|
54 |
+
crops: np.ndarray
|
55 |
+
tiling: tuple[int, int]
|
56 |
+
|
57 |
+
|
58 |
+
def overlap_crop_image(
|
59 |
+
image: np.ndarray,
|
60 |
+
overlap_margin: int,
|
61 |
+
max_crops: int,
|
62 |
+
base_size: tuple[int, int] = (378, 378),
|
63 |
+
patch_size: int = 14,
|
64 |
+
) -> OverlapCropOutput:
|
65 |
+
"""
|
66 |
+
Process an image using an overlap-and-resize cropping strategy with margin handling.
|
67 |
+
|
68 |
+
This function takes an input image and creates multiple overlapping crops with
|
69 |
+
consistent margins. It produces:
|
70 |
+
1. A single global crop resized to base_size
|
71 |
+
2. Multiple overlapping local crops that maintain high resolution details
|
72 |
+
3. A patch ordering matrix that tracks correspondence between crops
|
73 |
+
|
74 |
+
The overlap strategy ensures:
|
75 |
+
- Smooth transitions between adjacent crops
|
76 |
+
- No loss of information at crop boundaries
|
77 |
+
- Proper handling of features that cross crop boundaries
|
78 |
+
- Consistent patch indexing across the full image
|
79 |
+
|
80 |
+
Args:
|
81 |
+
image (np.ndarray): Input image as numpy array with shape (H,W,C)
|
82 |
+
base_size (tuple[int,int]): Target size for crops, default (378,378)
|
83 |
+
patch_size (int): Size of patches in pixels, default 14
|
84 |
+
overlap_margin (int): Margin size in patch units, default 4
|
85 |
+
max_crops (int): Maximum number of crops allowed, default 12
|
86 |
+
|
87 |
+
Returns:
|
88 |
+
OverlapCropOutput: Dictionary containing:
|
89 |
+
- crops: A numpy array containing the global crop of the full image (index 0)
|
90 |
+
followed by the overlapping cropped regions (indices 1+)
|
91 |
+
- tiling: Tuple of (height,width) tile counts
|
92 |
+
"""
|
93 |
+
original_h, original_w = image.shape[:2]
|
94 |
+
|
95 |
+
# Convert margin from patch units to pixels
|
96 |
+
margin_pixels = patch_size * overlap_margin
|
97 |
+
total_margin_pixels = margin_pixels * 2 # Both sides
|
98 |
+
|
99 |
+
# Calculate crop parameters
|
100 |
+
crop_patches = base_size[0] // patch_size # patches per crop dimension
|
101 |
+
crop_window_patches = crop_patches - (2 * overlap_margin) # usable patches
|
102 |
+
crop_window_size = crop_window_patches * patch_size # usable size in pixels
|
103 |
+
|
104 |
+
# Determine tiling
|
105 |
+
tiling = select_tiling(
|
106 |
+
original_h - total_margin_pixels,
|
107 |
+
original_w - total_margin_pixels,
|
108 |
+
crop_window_size,
|
109 |
+
max_crops,
|
110 |
+
)
|
111 |
+
|
112 |
+
# Pre-allocate crops.
|
113 |
+
n_crops = tiling[0] * tiling[1] + 1 # 1 = global crop
|
114 |
+
crops = np.zeros(
|
115 |
+
(n_crops, base_size[0], base_size[1], image.shape[2]), dtype=np.uint8
|
116 |
+
)
|
117 |
+
|
118 |
+
# Resize image to fit tiling
|
119 |
+
target_size = (
|
120 |
+
tiling[0] * crop_window_size + total_margin_pixels,
|
121 |
+
tiling[1] * crop_window_size + total_margin_pixels,
|
122 |
+
)
|
123 |
+
|
124 |
+
if HAS_VIPS:
|
125 |
+
# Convert to vips for resizing
|
126 |
+
vips_image = pyvips.Image.new_from_array(image)
|
127 |
+
scale_x = target_size[1] / image.shape[1]
|
128 |
+
scale_y = target_size[0] / image.shape[0]
|
129 |
+
resized = vips_image.resize(scale_x, vscale=scale_y)
|
130 |
+
image = resized.numpy()
|
131 |
+
|
132 |
+
# Create global crop
|
133 |
+
scale_x = base_size[1] / vips_image.width
|
134 |
+
scale_y = base_size[0] / vips_image.height
|
135 |
+
global_vips = vips_image.resize(scale_x, vscale=scale_y)
|
136 |
+
crops[0] = global_vips.numpy()
|
137 |
+
else:
|
138 |
+
# Fallback to PIL
|
139 |
+
pil_img = Image.fromarray(image)
|
140 |
+
resized = pil_img.resize(
|
141 |
+
(int(target_size[1]), int(target_size[0])),
|
142 |
+
resample=Image.Resampling.LANCZOS,
|
143 |
+
)
|
144 |
+
image = np.asarray(resized)
|
145 |
+
|
146 |
+
# Create global crop
|
147 |
+
global_pil = pil_img.resize(
|
148 |
+
(int(base_size[1]), int(base_size[0])), resample=Image.Resampling.LANCZOS
|
149 |
+
)
|
150 |
+
crops[0] = np.asarray(global_pil)
|
151 |
+
|
152 |
+
for i in range(tiling[0]):
|
153 |
+
for j in range(tiling[1]):
|
154 |
+
# Calculate crop coordinates
|
155 |
+
y0 = i * crop_window_size
|
156 |
+
x0 = j * crop_window_size
|
157 |
+
|
158 |
+
# Extract crop with padding if needed
|
159 |
+
y_end = min(y0 + base_size[0], image.shape[0])
|
160 |
+
x_end = min(x0 + base_size[1], image.shape[1])
|
161 |
+
|
162 |
+
crop_region = image[y0:y_end, x0:x_end]
|
163 |
+
crops[
|
164 |
+
1 + i * tiling[1] + j, : crop_region.shape[0], : crop_region.shape[1]
|
165 |
+
] = crop_region
|
166 |
+
|
167 |
+
return {"crops": crops, "tiling": tiling}
|
168 |
+
|
169 |
+
|
170 |
+
def reconstruct_from_crops(
|
171 |
+
crops: torch.Tensor,
|
172 |
+
tiling: tuple[int, int],
|
173 |
+
overlap_margin: int,
|
174 |
+
patch_size: int = 14,
|
175 |
+
) -> torch.Tensor:
|
176 |
+
"""
|
177 |
+
Reconstruct the original image from overlapping crops into a single seamless image.
|
178 |
+
|
179 |
+
Takes a list of overlapping image crops along with their positional metadata and
|
180 |
+
reconstructs them into a single coherent image by carefully stitching together
|
181 |
+
non-overlapping regions. Handles both numpy arrays and PyTorch tensors.
|
182 |
+
|
183 |
+
Args:
|
184 |
+
crops: List of image crops as numpy arrays or PyTorch tensors with shape
|
185 |
+
(H,W,C)
|
186 |
+
tiling: Tuple of (height,width) indicating crop grid layout
|
187 |
+
patch_size: Size in pixels of each patch, default 14
|
188 |
+
overlap_margin: Number of overlapping patches on each edge, default 4
|
189 |
+
|
190 |
+
Returns:
|
191 |
+
Reconstructed image as numpy array or PyTorch tensor matching input type,
|
192 |
+
with shape (H,W,C) where H,W are the original image dimensions
|
193 |
+
"""
|
194 |
+
tiling_h, tiling_w = tiling
|
195 |
+
crop_height, crop_width = crops[0].shape[:2]
|
196 |
+
margin_pixels = overlap_margin * patch_size
|
197 |
+
|
198 |
+
# Calculate output size (only adding margins once)
|
199 |
+
output_h = (crop_height - 2 * margin_pixels) * tiling_h + 2 * margin_pixels
|
200 |
+
output_w = (crop_width - 2 * margin_pixels) * tiling_w + 2 * margin_pixels
|
201 |
+
|
202 |
+
reconstructed = torch.zeros(
|
203 |
+
(output_h, output_w, crops[0].shape[2]),
|
204 |
+
device=crops[0].device,
|
205 |
+
dtype=crops[0].dtype,
|
206 |
+
)
|
207 |
+
|
208 |
+
for i, crop in enumerate(crops):
|
209 |
+
tile_y = i // tiling_w
|
210 |
+
tile_x = i % tiling_w
|
211 |
+
|
212 |
+
# For each tile, determine which part to keep
|
213 |
+
# Keep left margin only for first column
|
214 |
+
x_start = 0 if tile_x == 0 else margin_pixels
|
215 |
+
# Keep right margin only for last column
|
216 |
+
x_end = crop_width if tile_x == tiling_w - 1 else crop_width - margin_pixels
|
217 |
+
# Keep top margin only for first row
|
218 |
+
y_start = 0 if tile_y == 0 else margin_pixels
|
219 |
+
# Keep bottom margin only for last row
|
220 |
+
y_end = crop_height if tile_y == tiling_h - 1 else crop_height - margin_pixels
|
221 |
+
|
222 |
+
# Calculate where this piece belongs in the output
|
223 |
+
out_x = tile_x * (crop_width - 2 * margin_pixels)
|
224 |
+
out_y = tile_y * (crop_height - 2 * margin_pixels)
|
225 |
+
|
226 |
+
# Place the piece
|
227 |
+
reconstructed[
|
228 |
+
out_y + y_start : out_y + y_end, out_x + x_start : out_x + x_end
|
229 |
+
] = crop[y_start:y_end, x_start:x_end]
|
230 |
+
|
231 |
+
return reconstructed
|
layers.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from typing import Literal, Optional
|
7 |
+
|
8 |
+
try:
|
9 |
+
from torchao import quantize_
|
10 |
+
from torchao.quantization import int4_weight_only
|
11 |
+
except ImportError:
|
12 |
+
|
13 |
+
def quantize_(model, quant_mode):
|
14 |
+
raise ImportError(
|
15 |
+
"torchao is not installed. Please install it with `pip install torchao`."
|
16 |
+
)
|
17 |
+
|
18 |
+
def int4_weight_only(group_size):
|
19 |
+
raise ImportError(
|
20 |
+
"torchao is not installed. Please install it with `pip install torchao`."
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
def gelu_approx(x):
|
25 |
+
return F.gelu(x, approximate="tanh")
|
26 |
+
|
27 |
+
|
28 |
+
@dataclass
|
29 |
+
class LinearWeights:
|
30 |
+
weight: torch.Tensor
|
31 |
+
bias: torch.Tensor
|
32 |
+
|
33 |
+
|
34 |
+
def linear(x: torch.Tensor, w: LinearWeights) -> torch.Tensor:
|
35 |
+
return F.linear(x, w.weight, w.bias)
|
36 |
+
|
37 |
+
|
38 |
+
def dequantize_tensor(W_q, scale, zero, orig_shape, dtype=torch.bfloat16):
|
39 |
+
_step = W_q.shape[0]
|
40 |
+
W_r = torch.empty([2 * _step, W_q.shape[1]], dtype=dtype, device=W_q.device)
|
41 |
+
W_r[:_step] = (W_q & 0b11110000) >> 4
|
42 |
+
W_r[_step:] = W_q & 0b00001111
|
43 |
+
W_r.sub_(zero).mul_(scale)
|
44 |
+
return W_r.reshape(orig_shape)
|
45 |
+
|
46 |
+
|
47 |
+
class QuantizedLinear(nn.Module):
|
48 |
+
def __init__(
|
49 |
+
self,
|
50 |
+
in_features: int,
|
51 |
+
out_features: int,
|
52 |
+
dtype: torch.dtype,
|
53 |
+
):
|
54 |
+
# TODO: Take group_size as an input instead of hardcoding it here.
|
55 |
+
super().__init__()
|
56 |
+
self.in_features = in_features
|
57 |
+
self.out_features = out_features
|
58 |
+
self.weight = nn.ParameterDict(
|
59 |
+
{
|
60 |
+
"packed": nn.Parameter(
|
61 |
+
torch.empty(
|
62 |
+
out_features * in_features // (128 * 2), 128, dtype=torch.uint8
|
63 |
+
),
|
64 |
+
requires_grad=False,
|
65 |
+
),
|
66 |
+
"scale": nn.Parameter(
|
67 |
+
torch.empty(out_features * in_features // 128, 1),
|
68 |
+
requires_grad=False,
|
69 |
+
),
|
70 |
+
"zero_point": nn.Parameter(
|
71 |
+
torch.empty(out_features * in_features // 128, 1),
|
72 |
+
requires_grad=False,
|
73 |
+
),
|
74 |
+
}
|
75 |
+
)
|
76 |
+
self.bias = nn.Parameter(torch.empty(out_features), requires_grad=False)
|
77 |
+
self.unpacked = False
|
78 |
+
|
79 |
+
def unpack(self):
|
80 |
+
if self.unpacked:
|
81 |
+
return
|
82 |
+
|
83 |
+
self.weight = nn.Parameter(
|
84 |
+
dequantize_tensor(
|
85 |
+
self.weight["packed"],
|
86 |
+
self.weight["scale"],
|
87 |
+
self.weight["zero_point"],
|
88 |
+
(self.out_features, self.in_features),
|
89 |
+
torch.bfloat16,
|
90 |
+
)
|
91 |
+
)
|
92 |
+
with torch.device("meta"):
|
93 |
+
self.linear = nn.Linear(
|
94 |
+
self.in_features, self.out_features, dtype=torch.bfloat16
|
95 |
+
)
|
96 |
+
self.linear.weight = self.weight
|
97 |
+
self.linear.bias = nn.Parameter(
|
98 |
+
self.bias.to(torch.bfloat16), requires_grad=False
|
99 |
+
)
|
100 |
+
|
101 |
+
del self.weight, self.bias
|
102 |
+
quantize_(self, int4_weight_only(group_size=128))
|
103 |
+
self.unpacked = True
|
104 |
+
torch.cuda.empty_cache()
|
105 |
+
|
106 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
107 |
+
if not self.unpacked:
|
108 |
+
self.unpack()
|
109 |
+
return self.linear(x)
|
110 |
+
|
111 |
+
|
112 |
+
@dataclass
|
113 |
+
class LayerNormWeights:
|
114 |
+
weight: torch.Tensor
|
115 |
+
bias: torch.Tensor
|
116 |
+
|
117 |
+
|
118 |
+
def layer_norm(x: torch.Tensor, w: LayerNormWeights) -> torch.Tensor:
|
119 |
+
return F.layer_norm(x, w.bias.shape, w.weight, w.bias)
|
120 |
+
|
121 |
+
|
122 |
+
@dataclass
|
123 |
+
class MLPWeights:
|
124 |
+
fc1: LinearWeights
|
125 |
+
fc2: LinearWeights
|
126 |
+
act: Literal["gelu_approx"] = "gelu_approx"
|
127 |
+
|
128 |
+
|
129 |
+
def mlp(x: torch.Tensor, w: MLPWeights, lora: Optional[dict] = None) -> torch.Tensor:
|
130 |
+
x0 = w.fc1(x)
|
131 |
+
if lora is not None:
|
132 |
+
x1 = F.linear(F.linear(x, lora["fc1"]["A"]), lora["fc1"]["B"])
|
133 |
+
x = x0 + x1
|
134 |
+
else:
|
135 |
+
x = x0
|
136 |
+
|
137 |
+
x = gelu_approx(x)
|
138 |
+
|
139 |
+
x0 = w.fc2(x)
|
140 |
+
if lora is not None:
|
141 |
+
x1 = F.linear(F.linear(x, lora["fc2"]["A"]), lora["fc2"]["B"])
|
142 |
+
x = x0 + x1
|
143 |
+
else:
|
144 |
+
x = x0
|
145 |
+
|
146 |
+
return x
|
147 |
+
|
148 |
+
|
149 |
+
@dataclass
|
150 |
+
class AttentionWeights:
|
151 |
+
qkv: LinearWeights
|
152 |
+
proj: LinearWeights
|
153 |
+
|
154 |
+
|
155 |
+
def attn(x: torch.Tensor, w: AttentionWeights, n_heads: int) -> torch.Tensor:
|
156 |
+
bsz, q_len, d_model = x.shape
|
157 |
+
head_dim = d_model // n_heads
|
158 |
+
|
159 |
+
q, k, v = [
|
160 |
+
t.view(bsz, q_len, n_heads, head_dim).transpose(1, 2)
|
161 |
+
for t in linear(x, w.qkv).chunk(3, dim=-1)
|
162 |
+
]
|
163 |
+
out = F.scaled_dot_product_attention(q, k, v)
|
164 |
+
out = out.transpose(1, 2).reshape(bsz, q_len, d_model)
|
165 |
+
out = linear(out, w.proj)
|
166 |
+
return out
|
lora.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from pathlib import Path
|
7 |
+
from urllib.request import Request, urlopen
|
8 |
+
from typing import Optional
|
9 |
+
|
10 |
+
|
11 |
+
def variant_cache_dir():
|
12 |
+
hf_hub_cache = os.environ.get("HF_HUB_CACHE")
|
13 |
+
if hf_hub_cache is not None:
|
14 |
+
return Path(hf_hub_cache) / "md_variants"
|
15 |
+
|
16 |
+
hf_home = os.environ.get("HF_HOME")
|
17 |
+
if hf_home is not None:
|
18 |
+
return Path(hf_home) / "hub" / "md_variants"
|
19 |
+
|
20 |
+
return Path("~/.cache/huggingface/hub").expanduser() / "md_variants"
|
21 |
+
|
22 |
+
|
23 |
+
def cached_variant_path(variant_id: str):
|
24 |
+
variant, *rest = variant_id.split("/", 1)
|
25 |
+
step = rest[0] if rest else "final"
|
26 |
+
|
27 |
+
cache_dir = variant_cache_dir() / variant
|
28 |
+
os.makedirs(cache_dir, exist_ok=True)
|
29 |
+
dest = cache_dir / f"{step}.pt"
|
30 |
+
if dest.exists():
|
31 |
+
return dest
|
32 |
+
|
33 |
+
md_endpoint = os.getenv("MOONDREAM_ENDPOINT", "https://api.moondream.ai")
|
34 |
+
|
35 |
+
headers = {"User-Agent": "moondream-torch"}
|
36 |
+
api_key = os.getenv("MOONDREAM_API_KEY")
|
37 |
+
if api_key is not None:
|
38 |
+
headers["X-Moondream-Auth"] = api_key
|
39 |
+
|
40 |
+
req = Request(f"{md_endpoint}/v1/variants/{variant_id}/download", headers=headers)
|
41 |
+
with urlopen(req) as r, open(dest, "wb") as f:
|
42 |
+
shutil.copyfileobj(r, f)
|
43 |
+
return dest
|
44 |
+
|
45 |
+
|
46 |
+
def nest(flat):
|
47 |
+
tree = {}
|
48 |
+
for k, v in flat.items():
|
49 |
+
parts = k.split(".")
|
50 |
+
d = tree
|
51 |
+
for p in parts[:-1]:
|
52 |
+
d = d.setdefault(p, {})
|
53 |
+
d[parts[-1]] = v
|
54 |
+
return tree
|
55 |
+
|
56 |
+
|
57 |
+
@functools.lru_cache(maxsize=5)
|
58 |
+
def variant_state_dict(variant_id: Optional[str] = None, device: str = "cpu"):
|
59 |
+
if variant_id is None:
|
60 |
+
return None
|
61 |
+
|
62 |
+
state_dict = torch.load(
|
63 |
+
cached_variant_path(variant_id), map_location=device, weights_only=True
|
64 |
+
)
|
65 |
+
|
66 |
+
# TODO: Move these into the training code that saves checkpoints...
|
67 |
+
rename_rules = [
|
68 |
+
("text_model.transformer.h", "text.blocks"),
|
69 |
+
(".mixer", ".attn"),
|
70 |
+
(".out_proj", ".proj"),
|
71 |
+
(".Wqkv", ".qkv"),
|
72 |
+
(".parametrizations.weight.0", ""),
|
73 |
+
]
|
74 |
+
new_state_dict = {}
|
75 |
+
for key, tensor in state_dict.items():
|
76 |
+
new_key = key
|
77 |
+
for old, new in rename_rules:
|
78 |
+
if old in new_key:
|
79 |
+
new_key = new_key.replace(old, new)
|
80 |
+
new_state_dict[new_key] = tensor
|
81 |
+
|
82 |
+
return nest(new_state_dict)
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70a7d94c0c8349eb58ed2d9e636ef2d0916960f321ecabeac6354b8ba3d7403f
|
3 |
+
size 3854538968
|
moondream.py
ADDED
@@ -0,0 +1,986 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import random
|
4 |
+
|
5 |
+
from typing import Literal, Tuple, TypedDict, Union, Dict, Any, Optional, List
|
6 |
+
from PIL import Image
|
7 |
+
from dataclasses import dataclass
|
8 |
+
from tokenizers import Tokenizer
|
9 |
+
|
10 |
+
from .config import MoondreamConfig
|
11 |
+
from .image_crops import reconstruct_from_crops
|
12 |
+
from .vision import vision_encoder, vision_projection, prepare_crops, build_vision_model
|
13 |
+
from .text import build_text_model, text_encoder, lm_head, text_decoder
|
14 |
+
from .region import (
|
15 |
+
decode_coordinate,
|
16 |
+
encode_coordinate,
|
17 |
+
decode_size,
|
18 |
+
encode_size,
|
19 |
+
encode_spatial_refs,
|
20 |
+
SpatialRefs,
|
21 |
+
)
|
22 |
+
from .layers import QuantizedLinear
|
23 |
+
from .lora import variant_state_dict
|
24 |
+
from .utils import remove_outlier_points
|
25 |
+
|
26 |
+
ImageEncodingSettings = TypedDict(
|
27 |
+
"ImageEncodingSettings",
|
28 |
+
{"variant": str},
|
29 |
+
total=False,
|
30 |
+
)
|
31 |
+
|
32 |
+
TextSamplingSettings = TypedDict(
|
33 |
+
"TextSamplingSettings",
|
34 |
+
{
|
35 |
+
"max_tokens": int,
|
36 |
+
"temperature": float,
|
37 |
+
"top_p": float,
|
38 |
+
"variant": str,
|
39 |
+
},
|
40 |
+
total=False,
|
41 |
+
)
|
42 |
+
|
43 |
+
ObjectSamplingSettings = TypedDict(
|
44 |
+
"ObjectSamplingSettings",
|
45 |
+
{"max_objects": int, "variant": str},
|
46 |
+
total=False,
|
47 |
+
)
|
48 |
+
|
49 |
+
|
50 |
+
DEFAULT_MAX_TOKENS = 768
|
51 |
+
DEFAULT_TEMPERATURE = 0.5
|
52 |
+
DEFAULT_TOP_P = 0.3
|
53 |
+
DEFAULT_MAX_OBJECTS = 50
|
54 |
+
|
55 |
+
|
56 |
+
@dataclass(frozen=True)
|
57 |
+
class EncodedImage:
|
58 |
+
pos: int
|
59 |
+
caches: List[Tuple[torch.Tensor, torch.Tensor]]
|
60 |
+
|
61 |
+
|
62 |
+
class KVCache(nn.Module):
|
63 |
+
|
64 |
+
def __init__(self, n_heads, n_kv_heads, max_context, dim, device, dtype):
|
65 |
+
super().__init__()
|
66 |
+
cache_shape = (1, n_kv_heads, max_context, dim // n_heads)
|
67 |
+
self.register_buffer(
|
68 |
+
"k_cache", torch.zeros(*cache_shape, device=device, dtype=dtype)
|
69 |
+
)
|
70 |
+
self.register_buffer(
|
71 |
+
"v_cache", torch.zeros(*cache_shape, device=device, dtype=dtype)
|
72 |
+
)
|
73 |
+
|
74 |
+
def update(self, pos_ids, k, v):
|
75 |
+
kout, vout = self.k_cache, self.v_cache
|
76 |
+
kout[:, :, pos_ids, :] = k
|
77 |
+
vout[:, :, pos_ids, :] = v
|
78 |
+
return kout, vout
|
79 |
+
|
80 |
+
|
81 |
+
class MoondreamModel(nn.Module):
|
82 |
+
|
83 |
+
def __init__(
|
84 |
+
self, config: MoondreamConfig, dtype=torch.bfloat16, setup_caches=True
|
85 |
+
):
|
86 |
+
super().__init__()
|
87 |
+
self.config = config
|
88 |
+
|
89 |
+
self.tokenizer = Tokenizer.from_pretrained("moondream/starmie-v1")
|
90 |
+
self.vision = build_vision_model(config.vision, dtype)
|
91 |
+
self.text = build_text_model(config.text, dtype)
|
92 |
+
|
93 |
+
# Region Model
|
94 |
+
linear_cls = (
|
95 |
+
QuantizedLinear if config.region.group_size is not None else nn.Linear
|
96 |
+
)
|
97 |
+
self.region = nn.ModuleDict(
|
98 |
+
{
|
99 |
+
"coord_encoder": linear_cls(
|
100 |
+
config.region.coord_feat_dim, config.region.dim, dtype=dtype
|
101 |
+
),
|
102 |
+
"coord_decoder": nn.ModuleDict(
|
103 |
+
{
|
104 |
+
"fc1": linear_cls(
|
105 |
+
config.region.dim, config.region.inner_dim, dtype=dtype
|
106 |
+
),
|
107 |
+
"fc2": linear_cls(
|
108 |
+
config.region.inner_dim,
|
109 |
+
config.region.coord_out_dim,
|
110 |
+
dtype=dtype,
|
111 |
+
),
|
112 |
+
}
|
113 |
+
),
|
114 |
+
"size_encoder": linear_cls(
|
115 |
+
config.region.size_feat_dim, config.region.dim, dtype=dtype
|
116 |
+
),
|
117 |
+
"size_decoder": nn.ModuleDict(
|
118 |
+
{
|
119 |
+
"fc1": linear_cls(
|
120 |
+
config.region.dim, config.region.inner_dim, dtype=dtype
|
121 |
+
),
|
122 |
+
"fc2": linear_cls(
|
123 |
+
config.region.inner_dim,
|
124 |
+
config.region.size_out_dim,
|
125 |
+
dtype=dtype,
|
126 |
+
),
|
127 |
+
}
|
128 |
+
),
|
129 |
+
}
|
130 |
+
)
|
131 |
+
self.region.coord_features = nn.Parameter(
|
132 |
+
torch.empty(config.region.coord_feat_dim // 2, 1, dtype=dtype).T
|
133 |
+
)
|
134 |
+
self.region.size_features = nn.Parameter(
|
135 |
+
torch.empty(config.region.size_feat_dim // 2, 2, dtype=dtype).T
|
136 |
+
)
|
137 |
+
|
138 |
+
attn_mask = torch.tril(
|
139 |
+
torch.ones(
|
140 |
+
1, 1, config.text.max_context, config.text.max_context, dtype=torch.bool
|
141 |
+
)
|
142 |
+
)
|
143 |
+
patch_w = config.vision.crop_size // config.vision.enc_patch_size
|
144 |
+
prefix_attn_len = 1 + patch_w**2
|
145 |
+
attn_mask[..., :prefix_attn_len, :prefix_attn_len] = 1
|
146 |
+
self.register_buffer("attn_mask", attn_mask, persistent=False)
|
147 |
+
|
148 |
+
# Initialize KV caches.
|
149 |
+
if setup_caches:
|
150 |
+
self._setup_caches()
|
151 |
+
|
152 |
+
def _setup_caches(self):
|
153 |
+
c = self.config.text
|
154 |
+
for b in self.text.blocks:
|
155 |
+
b.kv_cache = KVCache(
|
156 |
+
c.n_heads,
|
157 |
+
c.n_kv_heads,
|
158 |
+
c.max_context,
|
159 |
+
c.dim,
|
160 |
+
device=self.device,
|
161 |
+
dtype=self.vision.pos_emb.dtype,
|
162 |
+
)
|
163 |
+
|
164 |
+
@property
|
165 |
+
def device(self):
|
166 |
+
return self.vision.pos_emb.device
|
167 |
+
|
168 |
+
def _vis_enc(self, x: torch.Tensor):
|
169 |
+
return vision_encoder(x, self.vision, self.config.vision)
|
170 |
+
|
171 |
+
def _vis_proj(self, g: torch.Tensor, r: torch.Tensor):
|
172 |
+
return vision_projection(g, r, self.vision, self.config.vision)
|
173 |
+
|
174 |
+
def _prefill(
|
175 |
+
self,
|
176 |
+
x: torch.Tensor,
|
177 |
+
attn_mask: torch.Tensor,
|
178 |
+
pos_ids: torch.Tensor,
|
179 |
+
lora: Optional[torch.Tensor],
|
180 |
+
):
|
181 |
+
return text_decoder(x, self.text, attn_mask, pos_ids, self.config.text, lora)
|
182 |
+
|
183 |
+
def _decode_one_tok(
|
184 |
+
self,
|
185 |
+
x: torch.Tensor,
|
186 |
+
attn_mask: torch.Tensor,
|
187 |
+
pos_ids: torch.Tensor,
|
188 |
+
lora: Optional[torch.Tensor],
|
189 |
+
):
|
190 |
+
hidden = text_decoder(x, self.text, attn_mask, pos_ids, self.config.text, lora)
|
191 |
+
logits = lm_head(hidden, self.text)
|
192 |
+
return logits, hidden
|
193 |
+
|
194 |
+
def compile(self):
|
195 |
+
for module in self.modules():
|
196 |
+
if isinstance(module, QuantizedLinear):
|
197 |
+
module.unpack()
|
198 |
+
|
199 |
+
# TODO: vision_projection is not being compiled
|
200 |
+
self._vis_enc = torch.compile(self._vis_enc, fullgraph=True)
|
201 |
+
self._prefill = torch.compile(self._prefill, fullgraph=True)
|
202 |
+
self._decode_one_tok = torch.compile(
|
203 |
+
self._decode_one_tok, fullgraph=True, mode="reduce-overhead"
|
204 |
+
)
|
205 |
+
|
206 |
+
def _run_vision_encoder(self, image: Image.Image) -> torch.Tensor:
|
207 |
+
all_crops, tiling = prepare_crops(image, self.config.vision, device=self.device)
|
208 |
+
|
209 |
+
torch._dynamo.mark_dynamic(all_crops, 0)
|
210 |
+
|
211 |
+
outputs = self._vis_enc(all_crops)
|
212 |
+
|
213 |
+
global_features = outputs[0]
|
214 |
+
local_features = outputs[1:].view(
|
215 |
+
-1,
|
216 |
+
self.config.vision.enc_n_layers,
|
217 |
+
self.config.vision.enc_n_layers,
|
218 |
+
self.config.vision.enc_dim,
|
219 |
+
)
|
220 |
+
|
221 |
+
reconstructed = reconstruct_from_crops(
|
222 |
+
local_features,
|
223 |
+
tiling,
|
224 |
+
patch_size=1,
|
225 |
+
overlap_margin=self.config.vision.overlap_margin,
|
226 |
+
)
|
227 |
+
|
228 |
+
return self._vis_proj(global_features, reconstructed)
|
229 |
+
|
230 |
+
def encode_image(
|
231 |
+
self,
|
232 |
+
image: Union[Image.Image, EncodedImage],
|
233 |
+
settings: Optional[ImageEncodingSettings] = None,
|
234 |
+
) -> EncodedImage:
|
235 |
+
if isinstance(image, EncodedImage):
|
236 |
+
return image
|
237 |
+
elif not isinstance(image, Image.Image):
|
238 |
+
raise ValueError("image must be a PIL Image or EncodedImage")
|
239 |
+
|
240 |
+
lora = (
|
241 |
+
variant_state_dict(settings["variant"], device=self.device)
|
242 |
+
if settings is not None and settings["variant"] is not None
|
243 |
+
else None
|
244 |
+
)
|
245 |
+
|
246 |
+
# Run through text model in addition to the vision encoder, to minimize
|
247 |
+
# re-computation if multiple queries are performed on this image.
|
248 |
+
with torch.inference_mode():
|
249 |
+
img_emb = self._run_vision_encoder(image)
|
250 |
+
bos_emb = text_encoder(
|
251 |
+
torch.tensor([[self.config.tokenizer.bos_id]], device=self.device),
|
252 |
+
self.text,
|
253 |
+
)
|
254 |
+
inputs_embeds = torch.cat([bos_emb, img_emb[None]], dim=1)
|
255 |
+
mask = self.attn_mask[:, :, 0 : inputs_embeds.size(1), :]
|
256 |
+
pos_ids = torch.arange(inputs_embeds.size(1), dtype=torch.long)
|
257 |
+
self._prefill(inputs_embeds, mask, pos_ids, lora)
|
258 |
+
|
259 |
+
return EncodedImage(
|
260 |
+
pos=inputs_embeds.size(1),
|
261 |
+
caches=[
|
262 |
+
(
|
263 |
+
b.kv_cache.k_cache[:, :, : inputs_embeds.size(1), :].clone(),
|
264 |
+
b.kv_cache.v_cache[:, :, : inputs_embeds.size(1), :].clone(),
|
265 |
+
)
|
266 |
+
for b in self.text.blocks
|
267 |
+
],
|
268 |
+
)
|
269 |
+
|
270 |
+
def _apply_top_p(self, probs: torch.Tensor, top_p: float):
|
271 |
+
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
|
272 |
+
probs_sum = torch.cumsum(probs_sort, dim=-1)
|
273 |
+
mask = probs_sum - probs_sort > top_p
|
274 |
+
probs_sort[mask] = 0.0
|
275 |
+
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
|
276 |
+
next_probs = torch.zeros_like(probs)
|
277 |
+
next_probs.scatter_(dim=-1, index=probs_idx, src=probs_sort)
|
278 |
+
return next_probs
|
279 |
+
|
280 |
+
def _prefill_prompt(
|
281 |
+
self,
|
282 |
+
prompt_tokens: torch.Tensor,
|
283 |
+
pos: int,
|
284 |
+
temperature: float,
|
285 |
+
top_p: float,
|
286 |
+
spatial_refs: Optional[SpatialRefs] = None,
|
287 |
+
attn_mask: Optional[torch.Tensor] = None,
|
288 |
+
lora: Optional[dict] = None,
|
289 |
+
):
|
290 |
+
with torch.inference_mode():
|
291 |
+
prompt_emb = text_encoder(prompt_tokens, self.text)
|
292 |
+
|
293 |
+
if spatial_refs:
|
294 |
+
encoded_refs = encode_spatial_refs(spatial_refs, self.region)
|
295 |
+
prompt_emb[prompt_tokens == self.config.tokenizer.coord_id] = (
|
296 |
+
encoded_refs["coords"]
|
297 |
+
)
|
298 |
+
if encoded_refs["sizes"] is not None:
|
299 |
+
prompt_emb[prompt_tokens == self.config.tokenizer.size_id] = (
|
300 |
+
encoded_refs["sizes"]
|
301 |
+
)
|
302 |
+
|
303 |
+
torch._dynamo.mark_dynamic(prompt_emb, 1)
|
304 |
+
|
305 |
+
if attn_mask is None:
|
306 |
+
attn_mask = self.attn_mask
|
307 |
+
|
308 |
+
mask = attn_mask[:, :, pos : pos + prompt_emb.size(1), :]
|
309 |
+
pos_ids = torch.arange(pos, pos + prompt_emb.size(1), dtype=torch.long)
|
310 |
+
hidden_BC = self._prefill(prompt_emb, mask, pos_ids, lora)
|
311 |
+
logits_BV = lm_head(hidden_BC, self.text)
|
312 |
+
|
313 |
+
if temperature == 0:
|
314 |
+
next_token = torch.argmax(logits_BV, dim=-1).unsqueeze(1)
|
315 |
+
else:
|
316 |
+
probs = torch.softmax(logits_BV / temperature, dim=-1)
|
317 |
+
probs = self._apply_top_p(probs, top_p)
|
318 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
319 |
+
|
320 |
+
pos = pos + prompt_emb.size(1)
|
321 |
+
return logits_BV, hidden_BC, next_token, pos
|
322 |
+
|
323 |
+
def _generate_reasoning(
|
324 |
+
self,
|
325 |
+
prompt_tokens,
|
326 |
+
pos,
|
327 |
+
settings: Optional[TextSamplingSettings] = None,
|
328 |
+
spatial_refs: Optional[SpatialRefs] = None,
|
329 |
+
attn_mask: Optional[torch.Tensor] = None,
|
330 |
+
) -> Tuple[int, str, List[dict]]:
|
331 |
+
max_tokens = (
|
332 |
+
settings.get("max_tokens", DEFAULT_MAX_TOKENS)
|
333 |
+
if settings
|
334 |
+
else DEFAULT_MAX_TOKENS
|
335 |
+
)
|
336 |
+
temperature = (
|
337 |
+
settings.get("temperature", DEFAULT_TEMPERATURE)
|
338 |
+
if settings
|
339 |
+
else DEFAULT_TEMPERATURE
|
340 |
+
)
|
341 |
+
lora = (
|
342 |
+
variant_state_dict(settings["variant"], device=self.device)
|
343 |
+
if settings is not None and "variant" in settings
|
344 |
+
else None
|
345 |
+
)
|
346 |
+
|
347 |
+
top_p = settings.get("top_p", DEFAULT_TOP_P) if settings else DEFAULT_TOP_P
|
348 |
+
eos_id = self.config.tokenizer.answer_id
|
349 |
+
|
350 |
+
_, last_hidden_BC, next_token, pos = self._prefill_prompt(
|
351 |
+
prompt_tokens,
|
352 |
+
pos,
|
353 |
+
temperature,
|
354 |
+
top_p,
|
355 |
+
spatial_refs,
|
356 |
+
attn_mask=attn_mask,
|
357 |
+
lora=lora,
|
358 |
+
)
|
359 |
+
|
360 |
+
text_token_chunks = [[]]
|
361 |
+
grounding_chunks = [[]]
|
362 |
+
|
363 |
+
mask = torch.zeros(1, 1, 2048, device=self.device, dtype=torch.bool)
|
364 |
+
mask[:, :, :pos] = 1
|
365 |
+
pos_ids = torch.tensor([pos], device=self.device, dtype=torch.long)
|
366 |
+
generated_tokens = 0
|
367 |
+
|
368 |
+
while (
|
369 |
+
next_token_id := next_token.item()
|
370 |
+
) != eos_id and generated_tokens < max_tokens:
|
371 |
+
if (
|
372 |
+
next_token_id == self.config.tokenizer.start_ground_points_id
|
373 |
+
or next_token_id == self.config.tokenizer.end_ground_id
|
374 |
+
):
|
375 |
+
text_token_chunks.append([])
|
376 |
+
grounding_chunks.append([])
|
377 |
+
|
378 |
+
text_token_chunks[-1].append(next_token_id)
|
379 |
+
|
380 |
+
with torch.inference_mode():
|
381 |
+
if next_token_id == self.config.tokenizer.coord_id:
|
382 |
+
coord_logits = decode_coordinate(last_hidden_BC, self.region)
|
383 |
+
coord = torch.argmax(coord_logits, dim=-1) / coord_logits.size(-1)
|
384 |
+
grounding_chunks[-1].append(coord.item())
|
385 |
+
|
386 |
+
next_emb = encode_coordinate(
|
387 |
+
coord.to(dtype=coord_logits.dtype), self.region
|
388 |
+
).unsqueeze(0)
|
389 |
+
else:
|
390 |
+
next_emb = text_encoder(next_token, self.text)
|
391 |
+
|
392 |
+
mask[:, :, pos], pos_ids[0] = 1, pos
|
393 |
+
|
394 |
+
logits_BV, last_hidden_BC = self._decode_one_tok(
|
395 |
+
next_emb, mask, pos_ids, lora
|
396 |
+
)
|
397 |
+
logits_BV[:, self.config.tokenizer.eos_id] = float("-inf")
|
398 |
+
logits_BV[:, self.config.tokenizer.size_id] = float("-inf")
|
399 |
+
|
400 |
+
pos += 1
|
401 |
+
|
402 |
+
if temperature == 0:
|
403 |
+
next_token = torch.argmax(logits_BV, dim=-1).unsqueeze(1) # (1, 1)
|
404 |
+
else:
|
405 |
+
probs = torch.softmax(logits_BV / temperature, dim=-1) # (1, V)
|
406 |
+
probs = self._apply_top_p(probs, top_p)
|
407 |
+
next_token = torch.multinomial(probs, num_samples=1) # (1, 1)
|
408 |
+
|
409 |
+
generated_tokens += 1
|
410 |
+
|
411 |
+
text_chunks = [
|
412 |
+
self.tokenizer.decode(chunk_tokens) for chunk_tokens in text_token_chunks
|
413 |
+
]
|
414 |
+
text = "".join(text_chunks)
|
415 |
+
|
416 |
+
start_idx = 0
|
417 |
+
grounding = []
|
418 |
+
for text_chunk, grounding_chunk in zip(text_chunks, grounding_chunks):
|
419 |
+
if len(grounding_chunk) > 1:
|
420 |
+
points = []
|
421 |
+
for i in range(0, len(grounding_chunk) - (len(grounding_chunk) % 2), 2):
|
422 |
+
points.append((grounding_chunk[i], grounding_chunk[i + 1]))
|
423 |
+
grounding.append(
|
424 |
+
{
|
425 |
+
"start_idx": start_idx,
|
426 |
+
"end_idx": start_idx + len(text_chunk),
|
427 |
+
"points": points,
|
428 |
+
}
|
429 |
+
)
|
430 |
+
start_idx += len(text_chunk)
|
431 |
+
|
432 |
+
return pos, text, grounding
|
433 |
+
|
434 |
+
def _generate_answer(
|
435 |
+
self,
|
436 |
+
prompt_tokens: torch.Tensor,
|
437 |
+
pos: int,
|
438 |
+
settings: Optional[TextSamplingSettings] = None,
|
439 |
+
spatial_refs: Optional[SpatialRefs] = None,
|
440 |
+
eos_id: Optional[int] = None,
|
441 |
+
attn_mask: Optional[torch.Tensor] = None,
|
442 |
+
):
|
443 |
+
max_tokens = (
|
444 |
+
settings.get("max_tokens", DEFAULT_MAX_TOKENS)
|
445 |
+
if settings
|
446 |
+
else DEFAULT_MAX_TOKENS
|
447 |
+
)
|
448 |
+
temperature = (
|
449 |
+
settings.get("temperature", DEFAULT_TEMPERATURE)
|
450 |
+
if settings
|
451 |
+
else DEFAULT_TEMPERATURE
|
452 |
+
)
|
453 |
+
top_p = settings.get("top_p", DEFAULT_TOP_P) if settings else DEFAULT_TOP_P
|
454 |
+
eos_id = eos_id if eos_id is not None else self.config.tokenizer.eos_id
|
455 |
+
lora = (
|
456 |
+
variant_state_dict(settings["variant"], device=self.device)
|
457 |
+
if settings is not None and "variant" in settings
|
458 |
+
else None
|
459 |
+
)
|
460 |
+
|
461 |
+
_, _, next_token, pos = self._prefill_prompt(
|
462 |
+
prompt_tokens,
|
463 |
+
pos,
|
464 |
+
temperature,
|
465 |
+
top_p,
|
466 |
+
spatial_refs,
|
467 |
+
attn_mask=attn_mask,
|
468 |
+
lora=lora,
|
469 |
+
)
|
470 |
+
|
471 |
+
def generator(next_token, pos):
|
472 |
+
mask = torch.zeros(1, 1, 2048, device=self.device, dtype=torch.bool)
|
473 |
+
mask[:, :, :pos] = 1
|
474 |
+
pos_ids = torch.tensor([pos], device=self.device, dtype=torch.long)
|
475 |
+
generated_tokens = 0
|
476 |
+
|
477 |
+
# For properly handling token streaming with Unicode
|
478 |
+
token_cache = []
|
479 |
+
print_len = 0
|
480 |
+
|
481 |
+
while (
|
482 |
+
next_token_id := next_token.item()
|
483 |
+
) != eos_id and generated_tokens < max_tokens:
|
484 |
+
# Add token to our cache
|
485 |
+
token_cache.append(next_token_id)
|
486 |
+
|
487 |
+
# Decode all tokens collected so far
|
488 |
+
text = self.tokenizer.decode(token_cache)
|
489 |
+
|
490 |
+
# After a newline, we flush the cache completely
|
491 |
+
if text.endswith("\n"):
|
492 |
+
printable_text = text[print_len:]
|
493 |
+
token_cache = []
|
494 |
+
print_len = 0
|
495 |
+
if printable_text:
|
496 |
+
yield printable_text
|
497 |
+
# If the last token is a CJK character, we can safely print it
|
498 |
+
elif len(text) > 0 and _is_cjk_char(ord(text[-1])):
|
499 |
+
printable_text = text[print_len:]
|
500 |
+
print_len += len(printable_text)
|
501 |
+
if printable_text:
|
502 |
+
yield printable_text
|
503 |
+
# Otherwise, only yield up to the last space to avoid cutting words
|
504 |
+
else:
|
505 |
+
last_space_idx = text.rfind(" ", print_len)
|
506 |
+
if last_space_idx >= print_len:
|
507 |
+
printable_text = text[print_len : last_space_idx + 1]
|
508 |
+
print_len += len(printable_text)
|
509 |
+
if printable_text:
|
510 |
+
yield printable_text
|
511 |
+
|
512 |
+
with torch.inference_mode():
|
513 |
+
next_emb = text_encoder(next_token, self.text)
|
514 |
+
mask[:, :, pos], pos_ids[0] = 1, pos
|
515 |
+
|
516 |
+
logits_BV, _ = self._decode_one_tok(next_emb, mask, pos_ids, lora)
|
517 |
+
logits_BV[:, self.config.tokenizer.answer_id] = float("-inf")
|
518 |
+
|
519 |
+
pos += 1
|
520 |
+
|
521 |
+
if temperature == 0:
|
522 |
+
next_token = torch.argmax(logits_BV, dim=-1).unsqueeze(
|
523 |
+
1
|
524 |
+
) # (1, 1)
|
525 |
+
else:
|
526 |
+
probs = torch.softmax(logits_BV / temperature, dim=-1) # (1, V)
|
527 |
+
probs = self._apply_top_p(probs, top_p)
|
528 |
+
next_token = torch.multinomial(probs, num_samples=1) # (1, 1)
|
529 |
+
|
530 |
+
generated_tokens += 1
|
531 |
+
|
532 |
+
# Flush any remaining text in the cache
|
533 |
+
if token_cache:
|
534 |
+
text = self.tokenizer.decode(token_cache)
|
535 |
+
printable_text = text[print_len:]
|
536 |
+
if printable_text:
|
537 |
+
yield printable_text
|
538 |
+
|
539 |
+
return generator(next_token, pos)
|
540 |
+
|
541 |
+
def query(
|
542 |
+
self,
|
543 |
+
image: Optional[Union[Image.Image, EncodedImage]] = None,
|
544 |
+
question: str = None,
|
545 |
+
reasoning: bool = False,
|
546 |
+
spatial_refs: Optional[SpatialRefs] = None,
|
547 |
+
stream: bool = False,
|
548 |
+
settings: Optional[TextSamplingSettings] = None,
|
549 |
+
):
|
550 |
+
if self.config.tokenizer.templates["query"] is None:
|
551 |
+
raise NotImplementedError("Model does not support querying.")
|
552 |
+
|
553 |
+
if question is None:
|
554 |
+
raise ValueError("question must be provided.")
|
555 |
+
|
556 |
+
if spatial_refs and image is None:
|
557 |
+
raise ValueError("spatial_refs can only be used with an image.")
|
558 |
+
|
559 |
+
attn_mask = self.attn_mask
|
560 |
+
if image is not None:
|
561 |
+
image = self.encode_image(image, settings)
|
562 |
+
self.load_encoded_image(image)
|
563 |
+
pos = image.pos
|
564 |
+
prompt_toks = self.config.tokenizer.templates["query"]["prefix"]
|
565 |
+
else:
|
566 |
+
self._setup_caches()
|
567 |
+
pos = 0
|
568 |
+
prompt_toks = [
|
569 |
+
self.config.tokenizer.bos_id
|
570 |
+
] + self.config.tokenizer.templates["query"]["prefix"]
|
571 |
+
max_context = self.config.text.max_context
|
572 |
+
attn_mask = torch.tril(
|
573 |
+
torch.ones(1, 1, max_context, max_context, dtype=torch.bool)
|
574 |
+
).to(self.device)
|
575 |
+
|
576 |
+
spatial_toks = []
|
577 |
+
if spatial_refs:
|
578 |
+
for ref in spatial_refs:
|
579 |
+
coord_id = self.config.tokenizer.coord_id
|
580 |
+
size_id = self.config.tokenizer.size_id
|
581 |
+
if len(ref) == 2:
|
582 |
+
spatial_toks.extend([coord_id, coord_id])
|
583 |
+
else:
|
584 |
+
spatial_toks.extend([coord_id, coord_id, size_id])
|
585 |
+
|
586 |
+
prompt_tokens = [
|
587 |
+
prompt_toks
|
588 |
+
+ spatial_toks
|
589 |
+
+ self.tokenizer.encode(question).ids
|
590 |
+
+ self.config.tokenizer.templates["query"]["suffix"]
|
591 |
+
]
|
592 |
+
|
593 |
+
if reasoning:
|
594 |
+
prompt_tokens[0] += [self.config.tokenizer.thinking_id]
|
595 |
+
prompt_tokens = torch.tensor(prompt_tokens, device=self.device)
|
596 |
+
pos, reasoning_text, reasoning_grounding = self._generate_reasoning(
|
597 |
+
prompt_tokens, pos, settings, spatial_refs, attn_mask=attn_mask
|
598 |
+
)
|
599 |
+
prompt_tokens = [self.config.tokenizer.templates["query"]["suffix"]]
|
600 |
+
reasoning_dict = {
|
601 |
+
"reasoning": {"text": reasoning_text, "grounding": reasoning_grounding}
|
602 |
+
}
|
603 |
+
else:
|
604 |
+
prompt_tokens[0] += self.config.tokenizer.templates["query"]["suffix"]
|
605 |
+
reasoning_dict = {}
|
606 |
+
|
607 |
+
prompt_tokens = torch.tensor(prompt_tokens, device=self.device)
|
608 |
+
|
609 |
+
def generator():
|
610 |
+
for token in self._generate_answer(
|
611 |
+
prompt_tokens, pos, settings, spatial_refs, attn_mask=attn_mask
|
612 |
+
):
|
613 |
+
yield token
|
614 |
+
|
615 |
+
if stream:
|
616 |
+
return {**reasoning_dict, "answer": generator()}
|
617 |
+
else:
|
618 |
+
return {**reasoning_dict, "answer": "".join(list(generator()))}
|
619 |
+
|
620 |
+
def load_encoded_image(self, encoded_image: EncodedImage):
|
621 |
+
for b, (k, v) in zip(self.text.blocks, encoded_image.caches):
|
622 |
+
b.kv_cache.k_cache[:, :, : k.size(2), :] = k
|
623 |
+
b.kv_cache.v_cache[:, :, : v.size(2), :] = v
|
624 |
+
|
625 |
+
def caption(
|
626 |
+
self,
|
627 |
+
image: Union[Image.Image, EncodedImage],
|
628 |
+
length: Literal["normal", "short", "long"] = "normal",
|
629 |
+
stream: bool = False,
|
630 |
+
settings: Optional[TextSamplingSettings] = None,
|
631 |
+
):
|
632 |
+
if self.config.tokenizer.templates["caption"] is None:
|
633 |
+
raise NotImplementedError("Model does not support captioning.")
|
634 |
+
if length not in self.config.tokenizer.templates["caption"]:
|
635 |
+
raise ValueError(f"Model does not support caption length '{length}'.")
|
636 |
+
|
637 |
+
image = self.encode_image(image, settings)
|
638 |
+
self.load_encoded_image(image)
|
639 |
+
|
640 |
+
prompt_tokens = torch.tensor(
|
641 |
+
[self.config.tokenizer.templates["caption"][length]], device=self.device
|
642 |
+
)
|
643 |
+
|
644 |
+
def generator():
|
645 |
+
for token in self._generate_answer(prompt_tokens, image.pos, settings):
|
646 |
+
yield token
|
647 |
+
|
648 |
+
if stream:
|
649 |
+
return {"caption": generator()}
|
650 |
+
else:
|
651 |
+
return {"caption": "".join(list(generator()))}
|
652 |
+
|
653 |
+
def _generate_points(
|
654 |
+
self,
|
655 |
+
hidden: torch.Tensor,
|
656 |
+
next_token: torch.Tensor,
|
657 |
+
pos: int,
|
658 |
+
include_size: bool = True,
|
659 |
+
max_objects: int = DEFAULT_MAX_OBJECTS,
|
660 |
+
lora: Optional[dict] = None,
|
661 |
+
):
|
662 |
+
out = []
|
663 |
+
mask = torch.zeros(1, 1, 2048, device=self.device, dtype=torch.bool)
|
664 |
+
mask[:, :, :pos] = 1
|
665 |
+
pos_ids = torch.tensor([pos], device=self.device, dtype=torch.long)
|
666 |
+
|
667 |
+
with torch.inference_mode():
|
668 |
+
while (
|
669 |
+
next_token.item() != self.config.tokenizer.eos_id
|
670 |
+
and len(out) < max_objects
|
671 |
+
):
|
672 |
+
x_logits = decode_coordinate(hidden, self.region)
|
673 |
+
x_center = torch.argmax(x_logits, dim=-1) / x_logits.size(-1)
|
674 |
+
next_emb = encode_coordinate(
|
675 |
+
x_center.to(dtype=x_logits.dtype), self.region
|
676 |
+
).unsqueeze(0)
|
677 |
+
|
678 |
+
# Decode y-coordinate
|
679 |
+
mask[:, :, pos], pos_ids[0] = 1, pos
|
680 |
+
_, hidden = self._decode_one_tok(next_emb, mask, pos_ids, lora)
|
681 |
+
pos += 1
|
682 |
+
y_logits = decode_coordinate(hidden, self.region)
|
683 |
+
y_center = torch.argmax(y_logits, dim=-1) / y_logits.size(-1)
|
684 |
+
next_emb = encode_coordinate(
|
685 |
+
y_center.to(dtype=y_logits.dtype), self.region
|
686 |
+
).unsqueeze(0)
|
687 |
+
|
688 |
+
# Decode size
|
689 |
+
if include_size:
|
690 |
+
mask[:, :, pos], pos_ids[0] = 1, pos
|
691 |
+
logits, hidden = self._decode_one_tok(next_emb, mask, pos_ids, lora)
|
692 |
+
pos += 1
|
693 |
+
size_logits = decode_size(hidden, self.region)
|
694 |
+
|
695 |
+
# Get bin indices from the logits
|
696 |
+
w_bin = torch.argmax(size_logits[0], dim=-1)
|
697 |
+
h_bin = torch.argmax(size_logits[1], dim=-1)
|
698 |
+
|
699 |
+
# Convert from bin indices to actual size values using the inverse of the log-scale mapping
|
700 |
+
# Formula: size = 2^((bin / 1023.0) * 10.0 - 10.0)
|
701 |
+
w = torch.pow(2.0, (w_bin.float() / 1023.0) * 10.0 - 10.0)
|
702 |
+
h = torch.pow(2.0, (h_bin.float() / 1023.0) * 10.0 - 10.0)
|
703 |
+
|
704 |
+
next_emb = (
|
705 |
+
encode_size(
|
706 |
+
torch.tensor(
|
707 |
+
[w, h], device=self.device, dtype=size_logits.dtype
|
708 |
+
),
|
709 |
+
self.region,
|
710 |
+
)
|
711 |
+
.unsqueeze(0)
|
712 |
+
.unsqueeze(0)
|
713 |
+
)
|
714 |
+
|
715 |
+
# Add object
|
716 |
+
out.append(
|
717 |
+
{
|
718 |
+
"x_min": x_center.item() - w.item() / 2,
|
719 |
+
"y_min": y_center.item() - h.item() / 2,
|
720 |
+
"x_max": x_center.item() + w.item() / 2,
|
721 |
+
"y_max": y_center.item() + h.item() / 2,
|
722 |
+
}
|
723 |
+
)
|
724 |
+
else:
|
725 |
+
out.append({"x": x_center.item(), "y": y_center.item()})
|
726 |
+
|
727 |
+
# Decode next token (x-coordinate, or eos)
|
728 |
+
mask[:, :, pos], pos_ids[0] = 1, pos
|
729 |
+
logits, hidden = self._decode_one_tok(next_emb, mask, pos_ids, lora)
|
730 |
+
pos += 1
|
731 |
+
next_token = torch.argmax(logits, dim=-1)
|
732 |
+
|
733 |
+
return out
|
734 |
+
|
735 |
+
def detect(
|
736 |
+
self,
|
737 |
+
image: Union[Image.Image, EncodedImage],
|
738 |
+
object: str,
|
739 |
+
settings: Optional[ObjectSamplingSettings] = None,
|
740 |
+
):
|
741 |
+
if self.config.tokenizer.templates["detect"] is None:
|
742 |
+
raise NotImplementedError("Model does not support object detection.")
|
743 |
+
|
744 |
+
image = self.encode_image(image, settings)
|
745 |
+
self.load_encoded_image(image)
|
746 |
+
|
747 |
+
prompt_tokens = torch.tensor(
|
748 |
+
[
|
749 |
+
self.config.tokenizer.templates["detect"]["prefix"]
|
750 |
+
+ self.tokenizer.encode(" " + object).ids
|
751 |
+
+ self.config.tokenizer.templates["detect"]["suffix"]
|
752 |
+
],
|
753 |
+
device=self.device,
|
754 |
+
)
|
755 |
+
|
756 |
+
lora = (
|
757 |
+
variant_state_dict(settings["variant"], device=self.device)
|
758 |
+
if settings is not None and "variant" in settings
|
759 |
+
else None
|
760 |
+
)
|
761 |
+
|
762 |
+
_, hidden, next_token, pos = self._prefill_prompt(
|
763 |
+
prompt_tokens, image.pos, temperature=0, top_p=0, lora=lora
|
764 |
+
)
|
765 |
+
hidden = hidden[:, -1:, :]
|
766 |
+
|
767 |
+
max_objects = (
|
768 |
+
settings.get("max_objects", DEFAULT_MAX_OBJECTS)
|
769 |
+
if settings
|
770 |
+
else DEFAULT_MAX_OBJECTS
|
771 |
+
)
|
772 |
+
objects = self._generate_points(
|
773 |
+
hidden,
|
774 |
+
next_token,
|
775 |
+
pos,
|
776 |
+
include_size=True,
|
777 |
+
max_objects=max_objects,
|
778 |
+
lora=lora,
|
779 |
+
)
|
780 |
+
|
781 |
+
return {"objects": objects}
|
782 |
+
|
783 |
+
def point(
|
784 |
+
self,
|
785 |
+
image: Union[Image.Image, EncodedImage],
|
786 |
+
object: str,
|
787 |
+
settings: Optional[ObjectSamplingSettings] = None,
|
788 |
+
):
|
789 |
+
if self.config.tokenizer.templates["point"] is None:
|
790 |
+
raise NotImplementedError("Model does not support pointing.")
|
791 |
+
|
792 |
+
image = self.encode_image(image, settings)
|
793 |
+
self.load_encoded_image(image)
|
794 |
+
|
795 |
+
prompt_tokens = torch.tensor(
|
796 |
+
[
|
797 |
+
self.config.tokenizer.templates["point"]["prefix"]
|
798 |
+
+ self.tokenizer.encode(" " + object).ids
|
799 |
+
+ self.config.tokenizer.templates["point"]["suffix"]
|
800 |
+
],
|
801 |
+
device=self.device,
|
802 |
+
)
|
803 |
+
|
804 |
+
lora = (
|
805 |
+
variant_state_dict(settings["variant"], device=self.device)
|
806 |
+
if settings is not None and "variant" in settings
|
807 |
+
else None
|
808 |
+
)
|
809 |
+
|
810 |
+
_, hidden, next_token, pos = self._prefill_prompt(
|
811 |
+
prompt_tokens, image.pos, temperature=0, top_p=0, lora=lora
|
812 |
+
)
|
813 |
+
hidden = hidden[:, -1:, :]
|
814 |
+
|
815 |
+
max_objects = (
|
816 |
+
settings.get("max_objects", DEFAULT_MAX_OBJECTS)
|
817 |
+
if settings
|
818 |
+
else DEFAULT_MAX_OBJECTS
|
819 |
+
)
|
820 |
+
objects = self._generate_points(
|
821 |
+
hidden,
|
822 |
+
next_token,
|
823 |
+
pos,
|
824 |
+
include_size=False,
|
825 |
+
max_objects=max_objects,
|
826 |
+
lora=lora,
|
827 |
+
)
|
828 |
+
|
829 |
+
return {"points": objects}
|
830 |
+
|
831 |
+
def _detect_gaze(
|
832 |
+
self,
|
833 |
+
image: EncodedImage,
|
834 |
+
source: Tuple[float, float],
|
835 |
+
force_detect: bool = False,
|
836 |
+
):
|
837 |
+
with torch.inference_mode():
|
838 |
+
before_emb = text_encoder(
|
839 |
+
torch.tensor(
|
840 |
+
[self.tokenizer.encode("\n\nPoint:").ids], device=self.device
|
841 |
+
),
|
842 |
+
self.text,
|
843 |
+
)
|
844 |
+
after_emb = text_encoder(
|
845 |
+
torch.tensor(
|
846 |
+
[self.tokenizer.encode(" gaze\n\n").ids], device=self.device
|
847 |
+
),
|
848 |
+
self.text,
|
849 |
+
)
|
850 |
+
x_emb = encode_coordinate(
|
851 |
+
torch.tensor([[[source[0]]]], device=self.device, dtype=torch.bfloat16),
|
852 |
+
self.region,
|
853 |
+
)
|
854 |
+
y_emb = encode_coordinate(
|
855 |
+
torch.tensor([[[source[1]]]], device=self.device, dtype=torch.bfloat16),
|
856 |
+
self.region,
|
857 |
+
)
|
858 |
+
|
859 |
+
prompt_emb = torch.cat([before_emb, x_emb, y_emb, after_emb], dim=1)
|
860 |
+
|
861 |
+
self.load_encoded_image(image)
|
862 |
+
|
863 |
+
mask = self.attn_mask[:, :, image.pos : image.pos + prompt_emb.size(1), :]
|
864 |
+
pos_ids = torch.arange(
|
865 |
+
image.pos, image.pos + prompt_emb.size(1), dtype=torch.long
|
866 |
+
)
|
867 |
+
hidden = self._prefill(prompt_emb, mask, pos_ids, lora=None)
|
868 |
+
logits = lm_head(hidden, self.text)
|
869 |
+
next_token = torch.argmax(logits, dim=-1)
|
870 |
+
pos = image.pos + prompt_emb.size(1)
|
871 |
+
hidden = hidden[:, -1:, :]
|
872 |
+
|
873 |
+
if force_detect:
|
874 |
+
next_token = torch.tensor([[0]], device=self.device)
|
875 |
+
|
876 |
+
if next_token.item() == self.config.tokenizer.eos_id:
|
877 |
+
return None
|
878 |
+
|
879 |
+
gaze = self._generate_points(
|
880 |
+
hidden, next_token, pos, include_size=False, max_objects=1
|
881 |
+
)
|
882 |
+
return gaze[0]
|
883 |
+
|
884 |
+
def detect_gaze(
|
885 |
+
self,
|
886 |
+
image: Union[Image.Image, EncodedImage],
|
887 |
+
eye: Optional[Tuple[float, float]] = None,
|
888 |
+
face: Optional[Dict[str, float]] = None,
|
889 |
+
unstable_settings: Dict[str, Any] = {},
|
890 |
+
):
|
891 |
+
if "force_detect" in unstable_settings:
|
892 |
+
force_detect = unstable_settings["force_detect"]
|
893 |
+
else:
|
894 |
+
force_detect = False
|
895 |
+
|
896 |
+
if "prioritize_accuracy" in unstable_settings:
|
897 |
+
prioritize_accuracy = unstable_settings["prioritize_accuracy"]
|
898 |
+
else:
|
899 |
+
prioritize_accuracy = False
|
900 |
+
|
901 |
+
if not prioritize_accuracy:
|
902 |
+
if eye is None:
|
903 |
+
raise ValueError("eye must be provided when prioritize_accuracy=False")
|
904 |
+
image = self.encode_image(image)
|
905 |
+
return {"gaze": self._detect_gaze(image, eye, force_detect=force_detect)}
|
906 |
+
else:
|
907 |
+
if (
|
908 |
+
not isinstance(image, Image.Image)
|
909 |
+
and "flip_enc_img" not in unstable_settings
|
910 |
+
):
|
911 |
+
raise ValueError(
|
912 |
+
"image must be a PIL Image when prioritize_accuracy=True, "
|
913 |
+
"or flip_enc_img must be provided"
|
914 |
+
)
|
915 |
+
if face is None:
|
916 |
+
raise ValueError("face must be provided when prioritize_accuracy=True")
|
917 |
+
|
918 |
+
encoded_image = self.encode_image(image)
|
919 |
+
if (
|
920 |
+
isinstance(image, Image.Image)
|
921 |
+
and "flip_enc_img" not in unstable_settings
|
922 |
+
):
|
923 |
+
flipped_pil = image.copy()
|
924 |
+
flipped_pil = flipped_pil.transpose(method=Image.FLIP_LEFT_RIGHT)
|
925 |
+
encoded_flipped_image = self.encode_image(flipped_pil)
|
926 |
+
else:
|
927 |
+
encoded_flipped_image = unstable_settings["flip_enc_img"]
|
928 |
+
|
929 |
+
N = 10
|
930 |
+
|
931 |
+
detections = [
|
932 |
+
self._detect_gaze(
|
933 |
+
encoded_image,
|
934 |
+
(
|
935 |
+
random.uniform(face["x_min"], face["x_max"]),
|
936 |
+
random.uniform(face["y_min"], face["y_max"]),
|
937 |
+
),
|
938 |
+
force_detect=force_detect,
|
939 |
+
)
|
940 |
+
for _ in range(N)
|
941 |
+
]
|
942 |
+
detections = [
|
943 |
+
(gaze["x"], gaze["y"]) for gaze in detections if gaze is not None
|
944 |
+
]
|
945 |
+
flipped_detections = [
|
946 |
+
self._detect_gaze(
|
947 |
+
encoded_flipped_image,
|
948 |
+
(
|
949 |
+
1 - random.uniform(face["x_min"], face["x_max"]),
|
950 |
+
random.uniform(face["y_min"], face["y_max"]),
|
951 |
+
),
|
952 |
+
force_detect=force_detect,
|
953 |
+
)
|
954 |
+
for _ in range(N)
|
955 |
+
]
|
956 |
+
detections.extend(
|
957 |
+
[
|
958 |
+
(1 - gaze["x"], gaze["y"])
|
959 |
+
for gaze in flipped_detections
|
960 |
+
if gaze is not None
|
961 |
+
]
|
962 |
+
)
|
963 |
+
|
964 |
+
if len(detections) < N:
|
965 |
+
return {"gaze": None}
|
966 |
+
|
967 |
+
detections = remove_outlier_points(detections)
|
968 |
+
mean_gaze = (
|
969 |
+
sum(gaze[0] for gaze in detections) / len(detections),
|
970 |
+
sum(gaze[1] for gaze in detections) / len(detections),
|
971 |
+
)
|
972 |
+
|
973 |
+
return {"gaze": {"x": mean_gaze[0], "y": mean_gaze[1]}}
|
974 |
+
|
975 |
+
|
976 |
+
def _is_cjk_char(cp):
|
977 |
+
"""Checks whether CP is the codepoint of a CJK character."""
|
978 |
+
# This defines a "chinese character" as anything in the CJK Unicode block:
|
979 |
+
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
980 |
+
if (
|
981 |
+
(cp >= 0x4E00 and cp <= 0x9FFF)
|
982 |
+
or (cp >= 0x3400 and cp <= 0x4DBF)
|
983 |
+
or (cp >= 0x2F800 and cp <= 0x2FA1F)
|
984 |
+
):
|
985 |
+
return True
|
986 |
+
return False
|
moondream2-mmproj-f16.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4cc1cb3660d87ff56432ebeb7884ad35d67c48c7b9f6b2856f305e39c38eed8f
|
3 |
+
size 909777984
|
moondream2-text-model-f16.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e17e9107fb8781629b3c8ce177de57ffeae90fe14adcf7b99f0eef025889696
|
3 |
+
size 2839534976
|
region.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import math
|
4 |
+
|
5 |
+
from typing import List, Tuple, Union
|
6 |
+
|
7 |
+
from .layers import mlp
|
8 |
+
|
9 |
+
SpatialRefs = List[Union[Tuple[float, float], Tuple[float, float, float, float]]]
|
10 |
+
|
11 |
+
|
12 |
+
def fourier_features(x: torch.Tensor, w: torch.Tensor) -> torch.Tensor:
|
13 |
+
"""
|
14 |
+
Applies Fourier feature mapping to input tensor x using frequency matrix w. This
|
15 |
+
projects inputs through sinusoidal functions to create higher dimensional features
|
16 |
+
that help mitigate spectral bias - the tendency of neural networks to learn
|
17 |
+
low-frequency functions more easily than high-frequency ones. By explicitly
|
18 |
+
mapping inputs to higher frequencies through sin/cos transformations, we enable
|
19 |
+
better learning of fine details and higher frequency patterns.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
x: Input tensor to transform
|
23 |
+
w: Matrix of frequencies for the Fourier features transformation
|
24 |
+
|
25 |
+
Returns:
|
26 |
+
Concatenated cosine and sine transformed features as a tensor
|
27 |
+
"""
|
28 |
+
f = 2 * math.pi * x @ w
|
29 |
+
return torch.cat([f.cos(), f.sin()], dim=-1)
|
30 |
+
|
31 |
+
|
32 |
+
def encode_coordinate(coord: torch.Tensor, w: nn.Module) -> torch.Tensor:
|
33 |
+
"""
|
34 |
+
Takes as input a tensor containing a single float coordinate value (x or y)
|
35 |
+
and encodes it into hidden states for input to the text model.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
coord: Tensor with single float coordinate value
|
39 |
+
|
40 |
+
Returns:
|
41 |
+
Encoded hidden states tensor for input to text model
|
42 |
+
"""
|
43 |
+
return w.coord_encoder(fourier_features(coord, w.coord_features))
|
44 |
+
|
45 |
+
|
46 |
+
def decode_coordinate(hidden_state: torch.Tensor, w: nn.Module) -> torch.Tensor:
|
47 |
+
"""
|
48 |
+
Takes as input the last hidden state from the text model and outputs a single logit
|
49 |
+
representing either an x or y coordinate prediction.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
hidden_state: The final hidden state tensor from the text model.
|
53 |
+
|
54 |
+
Returns:
|
55 |
+
A single logit representing the predicted coordinate value (x or y)
|
56 |
+
"""
|
57 |
+
return mlp(hidden_state, w.coord_decoder)
|
58 |
+
|
59 |
+
|
60 |
+
def encode_size(size: torch.Tensor, w: nn.Module) -> torch.Tensor:
|
61 |
+
"""
|
62 |
+
Takes a tensor containing width and height values and encodes them into
|
63 |
+
hidden states for input to the text model.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
size: Tensor with two floats for width and height
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
Encoded hidden states tensor for input to text model
|
70 |
+
"""
|
71 |
+
return w.size_encoder(fourier_features(size, w.size_features))
|
72 |
+
|
73 |
+
|
74 |
+
def decode_size(hidden_state: torch.Tensor, w: nn.Module) -> torch.Tensor:
|
75 |
+
"""
|
76 |
+
Takes as input the last hidden state from the text model and outputs logits
|
77 |
+
for 1024 bins representing width and height in log-scale.
|
78 |
+
|
79 |
+
The bins are distributed according to the formula:
|
80 |
+
bin = (log2(size) + 10.0) / 10.0 * 1023.0
|
81 |
+
where size values are clamped to be at least 1/1024.
|
82 |
+
|
83 |
+
To convert from bin back to size:
|
84 |
+
size = 2^((bin / 1023.0) * 10.0 - 10.0)
|
85 |
+
|
86 |
+
Args:
|
87 |
+
hidden_state: The final hidden state tensor from the text model.
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
A tensor containing logits for 1024 bins for width and height.
|
91 |
+
Shape is (2, 1024) where the first dimension corresponds to width and height.
|
92 |
+
"""
|
93 |
+
return mlp(hidden_state, w.size_decoder).view(2, -1)
|
94 |
+
|
95 |
+
|
96 |
+
def encode_spatial_refs(spatial_refs: SpatialRefs, w: nn.Module) -> torch.Tensor:
|
97 |
+
"""
|
98 |
+
Takes a list of spatial references (points or regions) and encodes them into
|
99 |
+
hidden states for input to the text model.
|
100 |
+
|
101 |
+
Args:
|
102 |
+
spatial_refs: List of spatial references (points or boxes)
|
103 |
+
- Points are represented as normalized (x, y) tuples
|
104 |
+
- Boxes are represented as normalized (x_min, y_min, x_max, y_max) tuples
|
105 |
+
|
106 |
+
Returns:
|
107 |
+
{"coords": torch.Tensor, "sizes": Optional[torch.Tensor]}
|
108 |
+
"""
|
109 |
+
coords, sizes = [], []
|
110 |
+
for ref in spatial_refs:
|
111 |
+
if len(ref) == 2:
|
112 |
+
coords.append(ref[0])
|
113 |
+
coords.append(ref[1])
|
114 |
+
else:
|
115 |
+
x_c = (ref[0] + ref[2]) / 2
|
116 |
+
y_c = (ref[1] + ref[3]) / 2
|
117 |
+
width = ref[2] - ref[0]
|
118 |
+
height = ref[3] - ref[1]
|
119 |
+
coords.append(x_c)
|
120 |
+
coords.append(y_c)
|
121 |
+
sizes.append([width, height])
|
122 |
+
|
123 |
+
coords = torch.tensor(
|
124 |
+
coords, device=w.coord_features.device, dtype=w.coord_features.dtype
|
125 |
+
).view(-1, 1)
|
126 |
+
coords = encode_coordinate(coords, w)
|
127 |
+
|
128 |
+
if sizes:
|
129 |
+
sizes = torch.tensor(
|
130 |
+
sizes, device=w.size_features.device, dtype=w.size_features.dtype
|
131 |
+
)
|
132 |
+
sizes = encode_size(sizes, w)
|
133 |
+
else:
|
134 |
+
sizes = None
|
135 |
+
|
136 |
+
return {"coords": coords, "sizes": sizes}
|
region_model.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from .fourier_features import FourierFeatures
|
4 |
+
|
5 |
+
class RegionModel(nn.Module):
|
6 |
+
def __init__(self):
|
7 |
+
super().__init__()
|
8 |
+
|
9 |
+
self.position_features = FourierFeatures(2, 256)
|
10 |
+
self.position_encoder = nn.Linear(256, 2048)
|
11 |
+
self.size_features = FourierFeatures(2, 256)
|
12 |
+
self.size_encoder = nn.Linear(256, 2048)
|
13 |
+
|
14 |
+
self.position_decoder = nn.Linear(2048, 2)
|
15 |
+
self.size_decoder = nn.Linear(2048, 2)
|
16 |
+
self.confidence_decoder = nn.Linear(2048, 1)
|
17 |
+
|
18 |
+
def encode_position(self, position):
|
19 |
+
return self.position_encoder(self.position_features(position))
|
20 |
+
|
21 |
+
def encode_size(self, size):
|
22 |
+
return self.size_encoder(self.size_features(size))
|
23 |
+
|
24 |
+
def decode_position(self, x):
|
25 |
+
return self.position_decoder(x)
|
26 |
+
|
27 |
+
def decode_size(self, x):
|
28 |
+
return self.size_decoder(x)
|
29 |
+
|
30 |
+
def decode_confidence(self, x):
|
31 |
+
return self.confidence_decoder(x)
|
32 |
+
|
33 |
+
def encode(self, position, size):
|
34 |
+
return torch.stack(
|
35 |
+
[self.encode_position(position), self.encode_size(size)], dim=0
|
36 |
+
)
|
37 |
+
|
38 |
+
def decode(self, position_logits, size_logits):
|
39 |
+
return (
|
40 |
+
self.decode_position(position_logits),
|
41 |
+
self.decode_size(size_logits),
|
42 |
+
self.decode_confidence(size_logits),
|
43 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
einops
|
2 |
+
pyvips-binary==8.16.0
|
3 |
+
pyvips==2.2.3
|
rope.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Ethically sourced from https://github.com/xjdr-alt/entropix
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
def precompute_freqs_cis(
|
7 |
+
dim: int,
|
8 |
+
end: int,
|
9 |
+
theta: float = 10000.0,
|
10 |
+
use_scaled: bool = False,
|
11 |
+
dtype: torch.dtype = torch.float32,
|
12 |
+
) -> torch.Tensor:
|
13 |
+
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=dtype)[: (dim // 2)] / dim))
|
14 |
+
t = torch.arange(end, dtype=dtype).unsqueeze(1)
|
15 |
+
freqs = t * freqs.unsqueeze(0)
|
16 |
+
freqs = torch.exp(1j * freqs)
|
17 |
+
return torch.stack([freqs.real, freqs.imag], dim=-1)
|
18 |
+
|
19 |
+
|
20 |
+
def apply_rotary_emb(
|
21 |
+
x: torch.Tensor,
|
22 |
+
freqs_cis: torch.Tensor,
|
23 |
+
position_ids: torch.Tensor,
|
24 |
+
num_heads: int,
|
25 |
+
rot_dim: int = 32,
|
26 |
+
interleave: bool = False,
|
27 |
+
) -> torch.Tensor:
|
28 |
+
assert rot_dim == freqs_cis.shape[-2] * 2
|
29 |
+
assert num_heads == x.shape[1]
|
30 |
+
|
31 |
+
x_rot, x_pass = x[..., :rot_dim], x[..., rot_dim:]
|
32 |
+
|
33 |
+
if interleave:
|
34 |
+
xq_r = x_rot.float().reshape(*x_rot.shape[:-1], -1, 2)[..., 0]
|
35 |
+
xq_i = x_rot.float().reshape(*x_rot.shape[:-1], -1, 2)[..., 1]
|
36 |
+
else:
|
37 |
+
d_q = x_rot.shape[-1] // 2
|
38 |
+
xq_r, xq_i = x_rot[..., :d_q], x_rot[..., d_q:]
|
39 |
+
|
40 |
+
freqs_cos = freqs_cis[..., 0][position_ids, :].unsqueeze(0).unsqueeze(0)
|
41 |
+
freqs_sin = freqs_cis[..., 1][position_ids, :].unsqueeze(0).unsqueeze(0)
|
42 |
+
|
43 |
+
# Complex multiplication: (a + bi) * (c + di) = (ac - bd) + (ad + bc)i
|
44 |
+
xq_out_r = xq_r * freqs_cos - xq_i * freqs_sin
|
45 |
+
xq_out_i = xq_r * freqs_sin + xq_i * freqs_cos
|
46 |
+
xq_out = torch.stack((xq_out_r, xq_out_i), dim=-1).flatten(-2)
|
47 |
+
|
48 |
+
return torch.cat([xq_out.to(x.dtype), x_pass], dim=-1)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<|endoftext|>",
|
3 |
+
"eos_token": "<|endoftext|>",
|
4 |
+
"unk_token": "<|endoftext|>"
|
5 |
+
}
|
text.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from torch.nn import functional as F
|
5 |
+
from typing import Optional
|
6 |
+
|
7 |
+
from .layers import layer_norm, mlp, QuantizedLinear
|
8 |
+
from .rope import apply_rotary_emb, precompute_freqs_cis
|
9 |
+
from .config import TextConfig
|
10 |
+
|
11 |
+
|
12 |
+
def text_encoder(input_ids: torch.Tensor, w: nn.Module):
|
13 |
+
return F.embedding(input_ids, w.wte)
|
14 |
+
|
15 |
+
|
16 |
+
def attn(
|
17 |
+
x: torch.Tensor,
|
18 |
+
w: nn.Module,
|
19 |
+
freqs_cis: torch.Tensor,
|
20 |
+
kv_cache: nn.Module,
|
21 |
+
attn_mask: torch.Tensor,
|
22 |
+
n_heads: int,
|
23 |
+
n_kv_heads: int,
|
24 |
+
position_ids: torch.Tensor,
|
25 |
+
lora: Optional[dict],
|
26 |
+
):
|
27 |
+
bsz, q_len, d_model = x.shape
|
28 |
+
head_dim = d_model // n_heads
|
29 |
+
|
30 |
+
qkv_out = w.qkv(x) # shape: (bsz, q_len, (n_heads + 2*n_kv_heads)*head_dim)
|
31 |
+
if lora is not None:
|
32 |
+
qkv_out += F.linear(F.linear(x, lora["qkv"]["A"]), lora["qkv"]["B"])
|
33 |
+
q_dim = n_heads * head_dim
|
34 |
+
kv_dim = n_kv_heads * head_dim
|
35 |
+
q, k, v = qkv_out.split([q_dim, kv_dim, kv_dim], dim=-1)
|
36 |
+
del qkv_out
|
37 |
+
|
38 |
+
q = q.view(bsz, q_len, n_heads, head_dim).transpose(1, 2)
|
39 |
+
k = k.view(bsz, q_len, n_kv_heads, head_dim).transpose(1, 2)
|
40 |
+
v = v.view(bsz, q_len, n_kv_heads, head_dim).transpose(1, 2)
|
41 |
+
|
42 |
+
q = apply_rotary_emb(q, freqs_cis, position_ids, n_heads)
|
43 |
+
k = apply_rotary_emb(k, freqs_cis, position_ids, n_kv_heads)
|
44 |
+
|
45 |
+
if kv_cache is not None:
|
46 |
+
k, v = kv_cache.update(position_ids, k, v)
|
47 |
+
|
48 |
+
out = F.scaled_dot_product_attention(
|
49 |
+
q, k, v, attn_mask=attn_mask, enable_gqa=n_heads != n_kv_heads
|
50 |
+
)
|
51 |
+
out = out.transpose(1, 2).reshape(bsz, q_len, d_model)
|
52 |
+
|
53 |
+
out0 = w.proj(out)
|
54 |
+
if lora is not None:
|
55 |
+
out1 = F.linear(F.linear(x, lora["proj"]["A"]), lora["proj"]["B"])
|
56 |
+
out = out0 + out1
|
57 |
+
else:
|
58 |
+
out = out0
|
59 |
+
|
60 |
+
return out
|
61 |
+
|
62 |
+
|
63 |
+
def _attn(
|
64 |
+
x: torch.Tensor,
|
65 |
+
w: torch.Tensor,
|
66 |
+
freqs_cis: torch.Tensor,
|
67 |
+
attn_mask: torch.Tensor,
|
68 |
+
n_heads: int,
|
69 |
+
n_kv_heads: int,
|
70 |
+
):
|
71 |
+
bsz, q_len, d_model = x.shape
|
72 |
+
head_dim = d_model // n_heads
|
73 |
+
pos = 0
|
74 |
+
|
75 |
+
qkv_out = w.qkv(x) # shape: (bsz, q_len, (n_heads + 2*n_kv_heads)*head_dim)
|
76 |
+
q_dim = n_heads * head_dim
|
77 |
+
kv_dim = n_kv_heads * head_dim
|
78 |
+
|
79 |
+
q = qkv_out[..., :q_dim].view(bsz, q_len, n_heads, head_dim).transpose(1, 2)
|
80 |
+
k = (
|
81 |
+
qkv_out[..., q_dim : q_dim + kv_dim]
|
82 |
+
.view(bsz, q_len, n_kv_heads, head_dim)
|
83 |
+
.transpose(1, 2)
|
84 |
+
)
|
85 |
+
v = (
|
86 |
+
qkv_out[..., q_dim + kv_dim :]
|
87 |
+
.view(bsz, q_len, n_kv_heads, head_dim)
|
88 |
+
.transpose(1, 2)
|
89 |
+
)
|
90 |
+
|
91 |
+
position_ids = torch.arange(pos, pos + q_len, dtype=torch.long)
|
92 |
+
q = apply_rotary_emb(q, freqs_cis, position_ids, n_heads)
|
93 |
+
k = apply_rotary_emb(k, freqs_cis, position_ids, n_kv_heads)
|
94 |
+
out = F.scaled_dot_product_attention(
|
95 |
+
q, k, v, attn_mask=attn_mask, enable_gqa=n_heads != n_kv_heads
|
96 |
+
)
|
97 |
+
out = out.transpose(1, 2).reshape(bsz, q_len, d_model)
|
98 |
+
out = w.proj(out)
|
99 |
+
return out
|
100 |
+
|
101 |
+
|
102 |
+
def _produce_hidden(inputs_embeds: torch.Tensor, w: nn.Module, config: TextConfig):
|
103 |
+
hidden_BTC = inputs_embeds
|
104 |
+
|
105 |
+
bsz, q_len, d_model = inputs_embeds.shape
|
106 |
+
attn_mask = torch.zeros(q_len, q_len)
|
107 |
+
attn_mask[:730, :730] = 1
|
108 |
+
for i in range(730, q_len):
|
109 |
+
attn_mask[i, : i + 1] = 1
|
110 |
+
attn_mask = attn_mask.to(dtype=torch.bool)
|
111 |
+
|
112 |
+
for i, block in enumerate(w.blocks):
|
113 |
+
l_in = layer_norm(hidden_BTC, block.ln)
|
114 |
+
l_attn = _attn(
|
115 |
+
x=l_in,
|
116 |
+
w=block.attn,
|
117 |
+
freqs_cis=w.freqs_cis,
|
118 |
+
attn_mask=attn_mask,
|
119 |
+
n_heads=config.n_heads,
|
120 |
+
n_kv_heads=config.n_kv_heads,
|
121 |
+
)
|
122 |
+
l_mlp = mlp(l_in, block.mlp)
|
123 |
+
hidden_BTC = hidden_BTC + l_attn + l_mlp
|
124 |
+
|
125 |
+
return hidden_BTC
|
126 |
+
|
127 |
+
|
128 |
+
def text_decoder(
|
129 |
+
x: torch.Tensor,
|
130 |
+
w: nn.Module,
|
131 |
+
attn_mask: torch.Tensor,
|
132 |
+
position_ids: torch.Tensor,
|
133 |
+
config: TextConfig,
|
134 |
+
lora: Optional[dict],
|
135 |
+
):
|
136 |
+
for i, block in enumerate(w.blocks):
|
137 |
+
if lora is not None:
|
138 |
+
layer_lora = lora["text"]["blocks"][str(i)]
|
139 |
+
mlp_lora = layer_lora["mlp"]
|
140 |
+
attn_lora = layer_lora["attn"]
|
141 |
+
else:
|
142 |
+
mlp_lora = None
|
143 |
+
attn_lora = None
|
144 |
+
|
145 |
+
l_in = layer_norm(x, block.ln)
|
146 |
+
l_attn = attn(
|
147 |
+
l_in,
|
148 |
+
block.attn,
|
149 |
+
freqs_cis=w.freqs_cis,
|
150 |
+
kv_cache=block.kv_cache,
|
151 |
+
attn_mask=attn_mask,
|
152 |
+
n_heads=config.n_heads,
|
153 |
+
n_kv_heads=config.n_kv_heads,
|
154 |
+
position_ids=position_ids,
|
155 |
+
lora=attn_lora,
|
156 |
+
)
|
157 |
+
l_mlp = mlp(l_in, block.mlp, lora=mlp_lora)
|
158 |
+
x = x + l_attn + l_mlp
|
159 |
+
|
160 |
+
return x
|
161 |
+
|
162 |
+
|
163 |
+
def lm_head(hidden_BTC: torch.Tensor, w: nn.Module):
|
164 |
+
hidden_BC = hidden_BTC[:, -1, :]
|
165 |
+
hidden_BC = layer_norm(hidden_BC, w.post_ln)
|
166 |
+
logits = w.lm_head(hidden_BC)
|
167 |
+
return logits
|
168 |
+
|
169 |
+
|
170 |
+
def _lm_head(hidden_BTC: torch.Tensor, w: nn.Module):
|
171 |
+
hidden_BTC = layer_norm(hidden_BTC, w.post_ln)
|
172 |
+
logits = w.lm_head(hidden_BTC)
|
173 |
+
return logits
|
174 |
+
|
175 |
+
|
176 |
+
def build_text_model(config: TextConfig, dtype: torch.dtype) -> nn.Module:
|
177 |
+
qkv_dim = int(config.dim * (1 + 2 * config.n_kv_heads / config.n_heads))
|
178 |
+
linear_cls = QuantizedLinear if config.group_size is not None else nn.Linear
|
179 |
+
|
180 |
+
text = nn.ModuleDict(
|
181 |
+
{
|
182 |
+
"blocks": nn.ModuleList(
|
183 |
+
[
|
184 |
+
nn.ModuleDict(
|
185 |
+
{
|
186 |
+
"ln": nn.LayerNorm(config.dim, dtype=dtype),
|
187 |
+
"attn": nn.ModuleDict(
|
188 |
+
{
|
189 |
+
"qkv": linear_cls(config.dim, qkv_dim, dtype=dtype),
|
190 |
+
"proj": linear_cls(
|
191 |
+
config.dim, config.dim, dtype=dtype
|
192 |
+
),
|
193 |
+
}
|
194 |
+
),
|
195 |
+
"mlp": nn.ModuleDict(
|
196 |
+
{
|
197 |
+
"fc1": linear_cls(
|
198 |
+
config.dim, config.ff_dim, dtype=dtype
|
199 |
+
),
|
200 |
+
"fc2": linear_cls(
|
201 |
+
config.ff_dim, config.dim, dtype=dtype
|
202 |
+
),
|
203 |
+
}
|
204 |
+
),
|
205 |
+
}
|
206 |
+
)
|
207 |
+
for _ in range(config.n_layers)
|
208 |
+
]
|
209 |
+
),
|
210 |
+
"post_ln": nn.LayerNorm(config.dim, dtype=dtype),
|
211 |
+
"lm_head": nn.Linear(config.dim, config.vocab_size, dtype=dtype),
|
212 |
+
}
|
213 |
+
)
|
214 |
+
text.wte = nn.Parameter(torch.empty(config.vocab_size, config.dim, dtype=dtype))
|
215 |
+
text.register_buffer(
|
216 |
+
"freqs_cis",
|
217 |
+
precompute_freqs_cis(config.dim // (2 * config.n_heads), config.max_context),
|
218 |
+
persistent=False,
|
219 |
+
)
|
220 |
+
|
221 |
+
return text
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"50256": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"50257": {
|
13 |
+
"content": " ",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": false
|
19 |
+
},
|
20 |
+
"50258": {
|
21 |
+
"content": " ",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": false
|
27 |
+
},
|
28 |
+
"50259": {
|
29 |
+
"content": " ",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": true,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": false
|
35 |
+
},
|
36 |
+
"50260": {
|
37 |
+
"content": " ",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": true,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": false
|
43 |
+
},
|
44 |
+
"50261": {
|
45 |
+
"content": " ",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": true,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": false
|
51 |
+
},
|
52 |
+
"50262": {
|
53 |
+
"content": " ",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": true,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": false
|
59 |
+
},
|
60 |
+
"50263": {
|
61 |
+
"content": " ",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": true,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": false
|
67 |
+
},
|
68 |
+
"50264": {
|
69 |
+
"content": " ",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": true,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": false
|
75 |
+
},
|
76 |
+
"50265": {
|
77 |
+
"content": " ",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": true,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": false
|
83 |
+
},
|
84 |
+
"50266": {
|
85 |
+
"content": " ",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": true,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": false
|
91 |
+
},
|
92 |
+
"50267": {
|
93 |
+
"content": " ",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": true,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": false
|
99 |
+
},
|
100 |
+
"50268": {
|
101 |
+
"content": " ",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": true,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": false
|
107 |
+
},
|
108 |
+
"50269": {
|
109 |
+
"content": " ",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": true,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": false
|
115 |
+
},
|
116 |
+
"50270": {
|
117 |
+
"content": " ",
|
118 |
+
"lstrip": false,
|
119 |
+
"normalized": true,
|
120 |
+
"rstrip": false,
|
121 |
+
"single_word": false,
|
122 |
+
"special": false
|
123 |
+
},
|
124 |
+
"50271": {
|
125 |
+
"content": " ",
|
126 |
+
"lstrip": false,
|
127 |
+
"normalized": true,
|
128 |
+
"rstrip": false,
|
129 |
+
"single_word": false,
|
130 |
+
"special": false
|
131 |
+
},
|
132 |
+
"50272": {
|
133 |
+
"content": " ",
|
134 |
+
"lstrip": false,
|
135 |
+
"normalized": true,
|
136 |
+
"rstrip": false,
|
137 |
+
"single_word": false,
|
138 |
+
"special": false
|
139 |
+
},
|
140 |
+
"50273": {
|
141 |
+
"content": " ",
|
142 |
+
"lstrip": false,
|
143 |
+
"normalized": true,
|
144 |
+
"rstrip": false,
|
145 |
+
"single_word": false,
|
146 |
+
"special": false
|
147 |
+
},
|
148 |
+
"50274": {
|
149 |
+
"content": " ",
|
150 |
+
"lstrip": false,
|
151 |
+
"normalized": true,
|
152 |
+
"rstrip": false,
|
153 |
+
"single_word": false,
|
154 |
+
"special": false
|
155 |
+
},
|
156 |
+
"50275": {
|
157 |
+
"content": " ",
|
158 |
+
"lstrip": false,
|
159 |
+
"normalized": true,
|
160 |
+
"rstrip": false,
|
161 |
+
"single_word": false,
|
162 |
+
"special": false
|
163 |
+
},
|
164 |
+
"50276": {
|
165 |
+
"content": " ",
|
166 |
+
"lstrip": false,
|
167 |
+
"normalized": true,
|
168 |
+
"rstrip": false,
|
169 |
+
"single_word": false,
|
170 |
+
"special": false
|
171 |
+
},
|
172 |
+
"50277": {
|
173 |
+
"content": " ",
|
174 |
+
"lstrip": false,
|
175 |
+
"normalized": true,
|
176 |
+
"rstrip": false,
|
177 |
+
"single_word": false,
|
178 |
+
"special": false
|
179 |
+
},
|
180 |
+
"50278": {
|
181 |
+
"content": " ",
|
182 |
+
"lstrip": false,
|
183 |
+
"normalized": true,
|
184 |
+
"rstrip": false,
|
185 |
+
"single_word": false,
|
186 |
+
"special": false
|
187 |
+
},
|
188 |
+
"50279": {
|
189 |
+
"content": " ",
|
190 |
+
"lstrip": false,
|
191 |
+
"normalized": true,
|
192 |
+
"rstrip": false,
|
193 |
+
"single_word": false,
|
194 |
+
"special": false
|
195 |
+
},
|
196 |
+
"50280": {
|
197 |
+
"content": " ",
|
198 |
+
"lstrip": false,
|
199 |
+
"normalized": true,
|
200 |
+
"rstrip": false,
|
201 |
+
"single_word": false,
|
202 |
+
"special": false
|
203 |
+
},
|
204 |
+
"50281": {
|
205 |
+
"content": " ",
|
206 |
+
"lstrip": false,
|
207 |
+
"normalized": true,
|
208 |
+
"rstrip": false,
|
209 |
+
"single_word": false,
|
210 |
+
"special": false
|
211 |
+
},
|
212 |
+
"50282": {
|
213 |
+
"content": " ",
|
214 |
+
"lstrip": false,
|
215 |
+
"normalized": true,
|
216 |
+
"rstrip": false,
|
217 |
+
"single_word": false,
|
218 |
+
"special": false
|
219 |
+
},
|
220 |
+
"50283": {
|
221 |
+
"content": " ",
|
222 |
+
"lstrip": false,
|
223 |
+
"normalized": true,
|
224 |
+
"rstrip": false,
|
225 |
+
"single_word": false,
|
226 |
+
"special": false
|
227 |
+
},
|
228 |
+
"50284": {
|
229 |
+
"content": " ",
|
230 |
+
"lstrip": false,
|
231 |
+
"normalized": true,
|
232 |
+
"rstrip": false,
|
233 |
+
"single_word": false,
|
234 |
+
"special": false
|
235 |
+
},
|
236 |
+
"50285": {
|
237 |
+
"content": " ",
|
238 |
+
"lstrip": false,
|
239 |
+
"normalized": true,
|
240 |
+
"rstrip": false,
|
241 |
+
"single_word": false,
|
242 |
+
"special": false
|
243 |
+
},
|
244 |
+
"50286": {
|
245 |
+
"content": " ",
|
246 |
+
"lstrip": false,
|
247 |
+
"normalized": true,
|
248 |
+
"rstrip": false,
|
249 |
+
"single_word": false,
|
250 |
+
"special": false
|
251 |
+
},
|
252 |
+
"50287": {
|
253 |
+
"content": "\t\t\t\t\t\t\t\t\t",
|
254 |
+
"lstrip": false,
|
255 |
+
"normalized": true,
|
256 |
+
"rstrip": false,
|
257 |
+
"single_word": false,
|
258 |
+
"special": false
|
259 |
+
},
|
260 |
+
"50288": {
|
261 |
+
"content": "\t\t\t\t\t\t\t\t",
|
262 |
+
"lstrip": false,
|
263 |
+
"normalized": true,
|
264 |
+
"rstrip": false,
|
265 |
+
"single_word": false,
|
266 |
+
"special": false
|
267 |
+
},
|
268 |
+
"50289": {
|
269 |
+
"content": "\t\t\t\t\t\t\t",
|
270 |
+
"lstrip": false,
|
271 |
+
"normalized": true,
|
272 |
+
"rstrip": false,
|
273 |
+
"single_word": false,
|
274 |
+
"special": false
|
275 |
+
},
|
276 |
+
"50290": {
|
277 |
+
"content": "\t\t\t\t\t\t",
|
278 |
+
"lstrip": false,
|
279 |
+
"normalized": true,
|
280 |
+
"rstrip": false,
|
281 |
+
"single_word": false,
|
282 |
+
"special": false
|
283 |
+
},
|
284 |
+
"50291": {
|
285 |
+
"content": "\t\t\t\t\t",
|
286 |
+
"lstrip": false,
|
287 |
+
"normalized": true,
|
288 |
+
"rstrip": false,
|
289 |
+
"single_word": false,
|
290 |
+
"special": false
|
291 |
+
},
|
292 |
+
"50292": {
|
293 |
+
"content": "\t\t\t\t",
|
294 |
+
"lstrip": false,
|
295 |
+
"normalized": true,
|
296 |
+
"rstrip": false,
|
297 |
+
"single_word": false,
|
298 |
+
"special": false
|
299 |
+
},
|
300 |
+
"50293": {
|
301 |
+
"content": "\t\t\t",
|
302 |
+
"lstrip": false,
|
303 |
+
"normalized": true,
|
304 |
+
"rstrip": false,
|
305 |
+
"single_word": false,
|
306 |
+
"special": false
|
307 |
+
},
|
308 |
+
"50294": {
|
309 |
+
"content": "\t\t",
|
310 |
+
"lstrip": false,
|
311 |
+
"normalized": true,
|
312 |
+
"rstrip": false,
|
313 |
+
"single_word": false,
|
314 |
+
"special": false
|
315 |
+
}
|
316 |
+
},
|
317 |
+
"bos_token": "<|endoftext|>",
|
318 |
+
"clean_up_tokenization_spaces": true,
|
319 |
+
"eos_token": "<|endoftext|>",
|
320 |
+
"model_max_length": 2048,
|
321 |
+
"tokenizer_class": "CodeGenTokenizer",
|
322 |
+
"unk_token": "<|endoftext|>"
|
323 |
+
}
|
utils.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
def remove_outlier_points(points_tuples, k_nearest=2, threshold=2.0):
|
5 |
+
"""
|
6 |
+
Robust outlier detection for list of (x,y) tuples.
|
7 |
+
Only requires numpy.
|
8 |
+
|
9 |
+
Args:
|
10 |
+
points_tuples: list of (x,y) tuples
|
11 |
+
k_nearest: number of neighbors to consider
|
12 |
+
threshold: multiplier for median distance
|
13 |
+
|
14 |
+
Returns:
|
15 |
+
list: filtered list of (x,y) tuples with outliers removed
|
16 |
+
list: list of booleans indicating which points were kept (True = kept)
|
17 |
+
"""
|
18 |
+
points = np.array(points_tuples)
|
19 |
+
n_points = len(points)
|
20 |
+
|
21 |
+
# Calculate pairwise distances manually
|
22 |
+
dist_matrix = np.zeros((n_points, n_points))
|
23 |
+
for i in range(n_points):
|
24 |
+
for j in range(i + 1, n_points):
|
25 |
+
# Euclidean distance between points i and j
|
26 |
+
dist = np.sqrt(np.sum((points[i] - points[j]) ** 2))
|
27 |
+
dist_matrix[i, j] = dist
|
28 |
+
dist_matrix[j, i] = dist
|
29 |
+
|
30 |
+
# Get k nearest neighbors' distances
|
31 |
+
k = min(k_nearest, n_points - 1)
|
32 |
+
neighbor_distances = np.partition(dist_matrix, k, axis=1)[:, :k]
|
33 |
+
avg_neighbor_dist = np.mean(neighbor_distances, axis=1)
|
34 |
+
|
35 |
+
# Calculate mask using median distance
|
36 |
+
median_dist = np.median(avg_neighbor_dist)
|
37 |
+
mask = avg_neighbor_dist <= threshold * median_dist
|
38 |
+
|
39 |
+
# Return filtered tuples and mask
|
40 |
+
filtered_tuples = [t for t, m in zip(points_tuples, mask) if m]
|
41 |
+
return filtered_tuples
|
versions.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-03-04
|
2 |
+
2024-03-06
|
3 |
+
2024-03-13
|
4 |
+
2024-04-02
|
5 |
+
2024-05-08
|
6 |
+
2024-05-20
|
7 |
+
2024-07-23
|
8 |
+
2024-08-26
|
9 |
+
2025-01-09
|
10 |
+
2025-03-27
|
11 |
+
2025-04-14
|
12 |
+
2025-06-21
|
vision.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
from typing import Union, Tuple
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
from .layers import attn, layer_norm, mlp
|
10 |
+
from .image_crops import overlap_crop_image
|
11 |
+
from .config import VisionConfig
|
12 |
+
|
13 |
+
if torch.backends.mps.is_available():
|
14 |
+
# Non-divisible input sizes are not implemented on MPS device yet.
|
15 |
+
# https://github.com/pytorch/pytorch/issues/96056
|
16 |
+
def adaptive_avg_pool2d(input, output_size):
|
17 |
+
return F.adaptive_avg_pool2d(input.to("cpu"), output_size).to("mps")
|
18 |
+
|
19 |
+
else:
|
20 |
+
adaptive_avg_pool2d = F.adaptive_avg_pool2d
|
21 |
+
|
22 |
+
DeviceLike = Union[str, torch.device, int]
|
23 |
+
|
24 |
+
|
25 |
+
def prepare_crops(
|
26 |
+
image: Image.Image, config: VisionConfig, device: DeviceLike
|
27 |
+
) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
28 |
+
np_image = np.array(image.convert("RGB"))
|
29 |
+
overlap_crops = overlap_crop_image(
|
30 |
+
np_image, max_crops=config.max_crops, overlap_margin=config.overlap_margin
|
31 |
+
)
|
32 |
+
all_crops = overlap_crops["crops"]
|
33 |
+
all_crops = np.transpose(all_crops, (0, 3, 1, 2))
|
34 |
+
all_crops = (
|
35 |
+
torch.from_numpy(all_crops)
|
36 |
+
.to(device=device, dtype=torch.bfloat16)
|
37 |
+
.div_(255.0)
|
38 |
+
.sub_(0.5)
|
39 |
+
.div_(0.5)
|
40 |
+
)
|
41 |
+
return all_crops, overlap_crops["tiling"]
|
42 |
+
|
43 |
+
|
44 |
+
def create_patches(x, patch_size):
|
45 |
+
# Original shape: [B, C, H, W]
|
46 |
+
B, C, H, W = x.shape
|
47 |
+
P1 = P2 = patch_size
|
48 |
+
|
49 |
+
# Step 1: Split H and W dimensions into patches
|
50 |
+
# [B, C, H/P1, P1, W/P2, P2]
|
51 |
+
x = x.reshape(B, C, H // P1, P1, W // P2, P2)
|
52 |
+
|
53 |
+
# Step 2: Rearrange dimensions to match target shape
|
54 |
+
# [B, H/P1, W/P2, C, P1, P2]
|
55 |
+
x = x.permute(0, 2, 4, 1, 3, 5)
|
56 |
+
|
57 |
+
# Step 3: Combine dimensions to get final shape
|
58 |
+
# [B, (H/P1)*(W/P2), C*P1*P2]
|
59 |
+
x = x.reshape(B, (H // P1) * (W // P2), C * P1 * P2)
|
60 |
+
|
61 |
+
return x
|
62 |
+
|
63 |
+
|
64 |
+
def vision_encoder(input_BCHW: torch.Tensor, w: nn.Module, config: VisionConfig):
|
65 |
+
x = create_patches(input_BCHW, config.enc_patch_size)
|
66 |
+
|
67 |
+
x = w.patch_emb(x)
|
68 |
+
x = x + w.pos_emb
|
69 |
+
for block in w.blocks:
|
70 |
+
x = x + attn(layer_norm(x, block.ln1), block.attn, n_heads=config.enc_n_heads)
|
71 |
+
x = x + mlp(layer_norm(x, block.ln2), block.mlp)
|
72 |
+
x = layer_norm(x, w.post_ln)
|
73 |
+
|
74 |
+
return x
|
75 |
+
|
76 |
+
|
77 |
+
def vision_projection(
|
78 |
+
global_features: torch.Tensor,
|
79 |
+
reconstructed: torch.Tensor,
|
80 |
+
w: nn.Module,
|
81 |
+
config: VisionConfig,
|
82 |
+
):
|
83 |
+
reconstructed = reconstructed.permute(2, 0, 1)
|
84 |
+
reconstructed = adaptive_avg_pool2d(
|
85 |
+
reconstructed, output_size=(config.enc_n_layers, config.enc_n_layers)
|
86 |
+
)
|
87 |
+
reconstructed = reconstructed.permute(1, 2, 0).view(729, config.enc_dim)
|
88 |
+
final_features = torch.cat([global_features, reconstructed], dim=-1)
|
89 |
+
return mlp(final_features, w.proj_mlp)
|
90 |
+
|
91 |
+
|
92 |
+
def build_vision_model(config: VisionConfig, dtype: torch.dtype):
|
93 |
+
patch_dim = config.enc_patch_size * config.enc_patch_size * config.in_channels
|
94 |
+
grid_size = config.crop_size // config.enc_patch_size
|
95 |
+
num_patches = grid_size * grid_size
|
96 |
+
|
97 |
+
vision = nn.ModuleDict(
|
98 |
+
{
|
99 |
+
"patch_emb": nn.Linear(patch_dim, config.enc_dim, dtype=dtype),
|
100 |
+
"blocks": nn.ModuleList(
|
101 |
+
[
|
102 |
+
nn.ModuleDict(
|
103 |
+
{
|
104 |
+
"ln1": nn.LayerNorm(config.enc_dim, dtype=dtype),
|
105 |
+
"attn": nn.ModuleDict(
|
106 |
+
{
|
107 |
+
"qkv": nn.Linear(
|
108 |
+
config.enc_dim, 3 * config.enc_dim, dtype=dtype
|
109 |
+
),
|
110 |
+
"proj": nn.Linear(
|
111 |
+
config.enc_dim, config.enc_dim, dtype=dtype
|
112 |
+
),
|
113 |
+
}
|
114 |
+
),
|
115 |
+
"ln2": nn.LayerNorm(config.enc_dim, dtype=dtype),
|
116 |
+
"mlp": nn.ModuleDict(
|
117 |
+
{
|
118 |
+
"fc1": nn.Linear(
|
119 |
+
config.enc_dim, config.enc_ff_dim, dtype=dtype
|
120 |
+
),
|
121 |
+
"fc2": nn.Linear(
|
122 |
+
config.enc_ff_dim, config.enc_dim, dtype=dtype
|
123 |
+
),
|
124 |
+
}
|
125 |
+
),
|
126 |
+
}
|
127 |
+
)
|
128 |
+
for _ in range(config.enc_n_layers)
|
129 |
+
]
|
130 |
+
),
|
131 |
+
"post_ln": nn.LayerNorm(config.enc_dim, dtype=dtype),
|
132 |
+
"proj_mlp": nn.ModuleDict(
|
133 |
+
{
|
134 |
+
"fc1": nn.Linear(
|
135 |
+
config.enc_dim * 2, config.proj_inner_dim, dtype=dtype
|
136 |
+
),
|
137 |
+
"fc2": nn.Linear(
|
138 |
+
config.proj_inner_dim, config.proj_out_dim, dtype=dtype
|
139 |
+
),
|
140 |
+
}
|
141 |
+
),
|
142 |
+
}
|
143 |
+
)
|
144 |
+
vision.pos_emb = nn.Parameter(
|
145 |
+
torch.zeros(1, num_patches, config.enc_dim, dtype=dtype)
|
146 |
+
)
|
147 |
+
return vision
|
vision_encoder.py
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Union
|
2 |
+
|
3 |
+
import PIL.Image
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from torch import nn
|
7 |
+
from einops import rearrange
|
8 |
+
import PIL
|
9 |
+
from torchvision.transforms.v2 import (
|
10 |
+
Compose,
|
11 |
+
Resize,
|
12 |
+
InterpolationMode,
|
13 |
+
ToImage,
|
14 |
+
ToDtype,
|
15 |
+
Normalize,
|
16 |
+
)
|
17 |
+
from transformers.utils import is_flash_attn_2_available
|
18 |
+
|
19 |
+
try:
|
20 |
+
if is_flash_attn_2_available():
|
21 |
+
from flash_attn.modules.mha import FlashSelfAttention
|
22 |
+
else:
|
23 |
+
FlashSelfAttention = None
|
24 |
+
except ImportError:
|
25 |
+
FlashSelfAttention = None
|
26 |
+
|
27 |
+
|
28 |
+
class Attention(nn.Module):
|
29 |
+
|
30 |
+
def __init__(self, dim, num_heads=16, use_flash_attn=False):
|
31 |
+
super().__init__()
|
32 |
+
assert dim % num_heads == 0, "dim should be divisible by num_heads"
|
33 |
+
|
34 |
+
self.num_heads = num_heads
|
35 |
+
self.head_dim = dim // num_heads
|
36 |
+
|
37 |
+
self.qkv = nn.Linear(dim, dim * 3)
|
38 |
+
self.proj = nn.Linear(dim, dim)
|
39 |
+
|
40 |
+
if use_flash_attn and FlashSelfAttention is not None:
|
41 |
+
self.flash_attn = FlashSelfAttention()
|
42 |
+
else:
|
43 |
+
self.flash_attn = None
|
44 |
+
|
45 |
+
torch.nn.init.kaiming_normal_(
|
46 |
+
self.qkv.weight, mode="fan_in", nonlinearity="relu"
|
47 |
+
)
|
48 |
+
torch.nn.init.kaiming_normal_(
|
49 |
+
self.proj.weight, mode="fan_in", nonlinearity="relu"
|
50 |
+
)
|
51 |
+
|
52 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
53 |
+
if self.flash_attn is not None:
|
54 |
+
qkv = self.qkv(x)
|
55 |
+
qkv = rearrange(
|
56 |
+
qkv, "... (three h d) -> ... three h d", three=3, h=self.num_heads
|
57 |
+
)
|
58 |
+
attn_output = self.flash_attn(qkv)
|
59 |
+
output = rearrange(attn_output, "... h d -> ... (h d)")
|
60 |
+
output = self.proj(output)
|
61 |
+
return output
|
62 |
+
else:
|
63 |
+
B, N, C = x.shape
|
64 |
+
qkv = (
|
65 |
+
self.qkv(x)
|
66 |
+
.reshape(B, N, 3, self.num_heads, self.head_dim)
|
67 |
+
.permute(2, 0, 3, 1, 4)
|
68 |
+
)
|
69 |
+
q, k, v = qkv.unbind(0)
|
70 |
+
|
71 |
+
x = F.scaled_dot_product_attention(q, k, v)
|
72 |
+
|
73 |
+
x = x.transpose(1, 2).reshape(B, N, C)
|
74 |
+
x = self.proj(x)
|
75 |
+
return x
|
76 |
+
|
77 |
+
|
78 |
+
class VitBlock(nn.Module):
|
79 |
+
|
80 |
+
def __init__(self, embed_dim, use_flash_attn=False):
|
81 |
+
super().__init__()
|
82 |
+
self.attn = Attention(embed_dim, use_flash_attn=use_flash_attn)
|
83 |
+
self.mlp = MLP(embed_dim, 4304)
|
84 |
+
self.norm1 = nn.LayerNorm(embed_dim)
|
85 |
+
self.norm2 = nn.LayerNorm(embed_dim)
|
86 |
+
|
87 |
+
def forward(self, x):
|
88 |
+
x = x + self.attn(self.norm1(x))
|
89 |
+
x = x + self.mlp(self.norm2(x))
|
90 |
+
return x
|
91 |
+
|
92 |
+
|
93 |
+
class VisionTransformer(nn.Module):
|
94 |
+
|
95 |
+
def __init__(self, use_flash_attn=False):
|
96 |
+
super().__init__()
|
97 |
+
|
98 |
+
embed_len = 729
|
99 |
+
embed_dim = 1152
|
100 |
+
|
101 |
+
self.patch_embed = LinearPatchEmbedding()
|
102 |
+
self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * 0.02)
|
103 |
+
self.blocks = nn.Sequential(
|
104 |
+
*[VitBlock(embed_dim, use_flash_attn=use_flash_attn) for _ in range(27)]
|
105 |
+
)
|
106 |
+
self.norm = nn.LayerNorm(embed_dim)
|
107 |
+
|
108 |
+
def forward(self, x):
|
109 |
+
x = self.patch_embed(x)
|
110 |
+
x = x + self.pos_embed
|
111 |
+
for block in self.blocks:
|
112 |
+
x = block(x)
|
113 |
+
return self.norm(x)
|
114 |
+
|
115 |
+
|
116 |
+
class EncoderWrapper(nn.Module):
|
117 |
+
|
118 |
+
def __init__(self, use_flash_attn=False):
|
119 |
+
super().__init__()
|
120 |
+
self.model = nn.ModuleDict({"visual": VisionTransformer(use_flash_attn)})
|
121 |
+
|
122 |
+
def forward(self, x):
|
123 |
+
return self.model["visual"](x)
|
124 |
+
|
125 |
+
|
126 |
+
class LinearPatchEmbedding(nn.Module):
|
127 |
+
|
128 |
+
def __init__(self):
|
129 |
+
super().__init__()
|
130 |
+
self.linear = nn.Linear(588, 1152)
|
131 |
+
|
132 |
+
def forward(self, x):
|
133 |
+
b, c, hp1, wp2 = x.shape
|
134 |
+
p1, p2 = 14, 14
|
135 |
+
h, w = hp1 // p1, wp2 // p2
|
136 |
+
x = x.reshape(b, c, h, p1, w, p2)
|
137 |
+
x = x.permute(0, 2, 4, 1, 3, 5)
|
138 |
+
x = x.reshape(b, h * w, c * p1 * p2)
|
139 |
+
|
140 |
+
return self.linear(x)
|
141 |
+
|
142 |
+
|
143 |
+
class MLP(nn.Module):
|
144 |
+
def __init__(
|
145 |
+
self,
|
146 |
+
in_features: int,
|
147 |
+
hidden_features: int = None,
|
148 |
+
out_features: int = None,
|
149 |
+
) -> None:
|
150 |
+
super().__init__()
|
151 |
+
out_features = out_features or in_features
|
152 |
+
hidden_features = hidden_features or in_features
|
153 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
154 |
+
self.act = nn.GELU(approximate="tanh")
|
155 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
156 |
+
|
157 |
+
torch.nn.init.kaiming_normal_(
|
158 |
+
self.fc1.weight, mode="fan_in", nonlinearity="relu"
|
159 |
+
)
|
160 |
+
torch.nn.init.kaiming_normal_(
|
161 |
+
self.fc2.weight, mode="fan_in", nonlinearity="relu"
|
162 |
+
)
|
163 |
+
|
164 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
165 |
+
x = self.fc1(x)
|
166 |
+
x = self.act(x)
|
167 |
+
x = self.fc2(x)
|
168 |
+
return x
|
169 |
+
|
170 |
+
|
171 |
+
class VisionProjection(nn.Module):
|
172 |
+
def __init__(self):
|
173 |
+
super().__init__()
|
174 |
+
|
175 |
+
image_embedding_dim = 1152
|
176 |
+
model_dim = 2048
|
177 |
+
hidden_dim = model_dim * 4
|
178 |
+
|
179 |
+
self.mlp = MLP(image_embedding_dim * 2, hidden_dim, model_dim)
|
180 |
+
|
181 |
+
@property
|
182 |
+
def device(self):
|
183 |
+
return self.mlp.fc1.weight.device
|
184 |
+
|
185 |
+
def forward(self, x):
|
186 |
+
return self.mlp(x)
|
187 |
+
|
188 |
+
|
189 |
+
def create_patches(image, patch_size=(378, 378)):
|
190 |
+
assert image.dim() == 3, "Image must be in CHW format"
|
191 |
+
|
192 |
+
_, height, width = image.shape # Channels, Height, Width
|
193 |
+
patch_height, patch_width = patch_size
|
194 |
+
|
195 |
+
if height == patch_height and width == patch_width:
|
196 |
+
return []
|
197 |
+
|
198 |
+
# Iterate over the image and create patches
|
199 |
+
patches = []
|
200 |
+
for i in range(0, height, patch_height):
|
201 |
+
row_patches = []
|
202 |
+
for j in range(0, width, patch_width):
|
203 |
+
patch = image[:, i : i + patch_height, j : j + patch_width]
|
204 |
+
row_patches.append(patch)
|
205 |
+
patches.append(torch.stack(row_patches))
|
206 |
+
return patches
|
207 |
+
|
208 |
+
|
209 |
+
class VisionEncoder(nn.Module):
|
210 |
+
|
211 |
+
def __init__(self, use_flash_attn=False):
|
212 |
+
super().__init__()
|
213 |
+
|
214 |
+
self.encoder = EncoderWrapper(use_flash_attn)
|
215 |
+
self.projection = VisionProjection()
|
216 |
+
self.supported_sizes = [(378, 378), (378, 756), (756, 378), (756, 756)]
|
217 |
+
|
218 |
+
@property
|
219 |
+
def device(self):
|
220 |
+
return self.projection.mlp.fc1.weight.device
|
221 |
+
|
222 |
+
@property
|
223 |
+
def dtype(self):
|
224 |
+
return self.projection.mlp.fc1.weight.dtype
|
225 |
+
|
226 |
+
def preprocess(self, image: PIL.Image.Image):
|
227 |
+
width, height = image.size
|
228 |
+
max_dim = max(width, height)
|
229 |
+
if max_dim < 512:
|
230 |
+
im_size = (378, 378)
|
231 |
+
else:
|
232 |
+
aspect_ratio = width / height
|
233 |
+
im_size = min(
|
234 |
+
self.supported_sizes,
|
235 |
+
key=lambda size: (
|
236 |
+
abs((size[1] / size[0]) - aspect_ratio),
|
237 |
+
abs(size[0] - width) + abs(size[1] - height),
|
238 |
+
),
|
239 |
+
)
|
240 |
+
|
241 |
+
return Compose(
|
242 |
+
[
|
243 |
+
Resize(size=im_size, interpolation=InterpolationMode.BICUBIC),
|
244 |
+
ToImage(),
|
245 |
+
ToDtype(torch.float32, scale=True),
|
246 |
+
Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
247 |
+
]
|
248 |
+
)(image)
|
249 |
+
|
250 |
+
def forward(
|
251 |
+
self, images: Union[PIL.Image.Image, list[PIL.Image.Image], torch.Tensor]
|
252 |
+
) -> torch.Tensor:
|
253 |
+
im_list = None
|
254 |
+
if isinstance(images, torch.Tensor):
|
255 |
+
# Input must have dimensions (B, C, H, W)
|
256 |
+
assert (
|
257 |
+
len(images.shape) == 4
|
258 |
+
), "Tensor input must have dimensions (B, C, H, W)"
|
259 |
+
im_list = list(images)
|
260 |
+
elif isinstance(images, PIL.Image.Image):
|
261 |
+
im_list = [images]
|
262 |
+
elif isinstance(images, list):
|
263 |
+
im_list = images
|
264 |
+
else:
|
265 |
+
raise ValueError(
|
266 |
+
"Input must be a PIL image, list of PIL images, or a tensor"
|
267 |
+
)
|
268 |
+
|
269 |
+
# Preprocess unless the images are already tensors (indicating that
|
270 |
+
# they have already been preprocessed)
|
271 |
+
if not isinstance(im_list[0], torch.Tensor):
|
272 |
+
im_list = [self.preprocess(im.convert("RGB")) for im in im_list]
|
273 |
+
|
274 |
+
patches = [create_patches(im) for im in im_list]
|
275 |
+
flat_patches = [patch for image_patches in patches for patch in image_patches]
|
276 |
+
|
277 |
+
# Images may be variable size, and need to be resized to a common size after
|
278 |
+
# creating patches.
|
279 |
+
resized_images = [
|
280 |
+
F.interpolate(im.unsqueeze(0), size=(378, 378), mode="bilinear")
|
281 |
+
for im in im_list
|
282 |
+
]
|
283 |
+
|
284 |
+
combined_images = torch.cat([*resized_images, *flat_patches], dim=0)
|
285 |
+
combined_images = combined_images.to(self.device, dtype=self.dtype)
|
286 |
+
|
287 |
+
combined_features = self.encoder(combined_images)
|
288 |
+
|
289 |
+
full_img_features = combined_features[: len(im_list)]
|
290 |
+
patch_features = (
|
291 |
+
combined_features[len(im_list) :].transpose(1, 2).view(-1, 1152, 27, 27)
|
292 |
+
)
|
293 |
+
|
294 |
+
# Reshape patch features back to their original structure
|
295 |
+
reshaped_patch_features = []
|
296 |
+
patch_idx = 0
|
297 |
+
for i, patch_set in enumerate(patches):
|
298 |
+
if len(patch_set) == 0:
|
299 |
+
reshaped_patch_features.append(
|
300 |
+
full_img_features[i].transpose(0, 1).view(1152, 27, 27)
|
301 |
+
)
|
302 |
+
else:
|
303 |
+
sample_features = []
|
304 |
+
for row_patches in patch_set:
|
305 |
+
row_len = len(row_patches)
|
306 |
+
row_features = patch_features[
|
307 |
+
patch_idx : patch_idx + row_len
|
308 |
+
] # row_len, T, C
|
309 |
+
row_features = torch.cat(
|
310 |
+
list(row_features), dim=2
|
311 |
+
) # T, C * row_len
|
312 |
+
patch_idx += row_len
|
313 |
+
sample_features.append(row_features)
|
314 |
+
sample_features = torch.cat(sample_features, dim=1)
|
315 |
+
sample_features = F.interpolate(
|
316 |
+
sample_features.unsqueeze(0), size=(27, 27), mode="bilinear"
|
317 |
+
).squeeze(0)
|
318 |
+
reshaped_patch_features.append(sample_features)
|
319 |
+
reshaped_patch_features = (
|
320 |
+
torch.stack(reshaped_patch_features).view(-1, 1152, 729).transpose(1, 2)
|
321 |
+
)
|
322 |
+
|
323 |
+
final_features = torch.cat([full_img_features, reshaped_patch_features], dim=2)
|
324 |
+
|
325 |
+
return self.projection(final_features)
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
weights.py
ADDED
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import safetensors
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
from contextlib import contextmanager
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from typing import Callable, List
|
8 |
+
|
9 |
+
from .layers import AttentionWeights, LayerNormWeights, LinearWeights, MLPWeights
|
10 |
+
|
11 |
+
|
12 |
+
@dataclass
|
13 |
+
class VisionBlock:
|
14 |
+
ln1: LayerNormWeights
|
15 |
+
attn: AttentionWeights
|
16 |
+
ln2: LayerNormWeights
|
17 |
+
mlp: MLPWeights
|
18 |
+
|
19 |
+
|
20 |
+
@dataclass
|
21 |
+
class VisionModel:
|
22 |
+
patch_emb: LinearWeights
|
23 |
+
pos_emb: torch.Tensor
|
24 |
+
blocks: List[VisionBlock]
|
25 |
+
post_ln: LayerNormWeights
|
26 |
+
proj_mlp: MLPWeights
|
27 |
+
|
28 |
+
|
29 |
+
@dataclass
|
30 |
+
class TextBlock:
|
31 |
+
ln: LayerNormWeights
|
32 |
+
attn: AttentionWeights
|
33 |
+
mlp: MLPWeights
|
34 |
+
|
35 |
+
|
36 |
+
@dataclass
|
37 |
+
class TextModel:
|
38 |
+
wte: torch.Tensor
|
39 |
+
blocks: List[TextBlock]
|
40 |
+
post_ln: LayerNormWeights
|
41 |
+
lm_head: LinearWeights
|
42 |
+
|
43 |
+
|
44 |
+
@dataclass
|
45 |
+
class RegionModel:
|
46 |
+
coord_features: torch.Tensor
|
47 |
+
coord_encoder: LinearWeights
|
48 |
+
coord_decoder: MLPWeights
|
49 |
+
size_features: torch.Tensor
|
50 |
+
size_encoder: LinearWeights
|
51 |
+
size_decoder: MLPWeights
|
52 |
+
|
53 |
+
|
54 |
+
@dataclass
|
55 |
+
class MoondreamModel:
|
56 |
+
vision: VisionModel
|
57 |
+
text: TextModel
|
58 |
+
region: RegionModel
|
59 |
+
|
60 |
+
|
61 |
+
@contextmanager
|
62 |
+
def safetensors_open(safetensors_file: str):
|
63 |
+
"""
|
64 |
+
Simplify interfacing with safetensors files. Eliminates the need to ignore
|
65 |
+
type errors when using the `safe_open` function.
|
66 |
+
"""
|
67 |
+
with safetensors.safe_open(
|
68 |
+
safetensors_file, framework="pt"
|
69 |
+
) as st: # pyright: ignore
|
70 |
+
|
71 |
+
def get_tensor(name: str) -> torch.Tensor:
|
72 |
+
return st.get_tensor(name)
|
73 |
+
|
74 |
+
def get_keys() -> List[str]:
|
75 |
+
return st.keys()
|
76 |
+
|
77 |
+
get_tensor.keys = get_keys
|
78 |
+
|
79 |
+
yield get_tensor
|
80 |
+
|
81 |
+
|
82 |
+
def _load_weights(get_tensor: Callable[[str], torch.Tensor], model: nn.Module) -> None:
|
83 |
+
"""Internal function to load weights using a tensor getter function."""
|
84 |
+
model = model.to(dtype=torch.float16)
|
85 |
+
|
86 |
+
# Vision Model
|
87 |
+
model.vision["patch_emb"].weight.data.copy_(
|
88 |
+
get_tensor("vision_encoder.encoder.model.visual.patch_embed.linear.weight")
|
89 |
+
)
|
90 |
+
model.vision["patch_emb"].bias.data.copy_(
|
91 |
+
get_tensor("vision_encoder.encoder.model.visual.patch_embed.linear.bias")
|
92 |
+
)
|
93 |
+
model.vision.pos_emb.data.copy_(
|
94 |
+
get_tensor("vision_encoder.encoder.model.visual.pos_embed")
|
95 |
+
)
|
96 |
+
|
97 |
+
for i in range(len(model.vision["blocks"])):
|
98 |
+
prefix = f"vision_encoder.encoder.model.visual.blocks.{i}"
|
99 |
+
|
100 |
+
# Layer norms
|
101 |
+
model.vision["blocks"][i]["ln1"].weight.data.copy_(
|
102 |
+
get_tensor(f"{prefix}.norm1.weight")
|
103 |
+
)
|
104 |
+
model.vision["blocks"][i]["ln1"].bias.data.copy_(
|
105 |
+
get_tensor(f"{prefix}.norm1.bias")
|
106 |
+
)
|
107 |
+
model.vision["blocks"][i]["ln2"].weight.data.copy_(
|
108 |
+
get_tensor(f"{prefix}.norm2.weight")
|
109 |
+
)
|
110 |
+
model.vision["blocks"][i]["ln2"].bias.data.copy_(
|
111 |
+
get_tensor(f"{prefix}.norm2.bias")
|
112 |
+
)
|
113 |
+
|
114 |
+
# Attention
|
115 |
+
model.vision["blocks"][i]["attn"]["qkv"].weight.data.copy_(
|
116 |
+
get_tensor(f"{prefix}.attn.qkv.weight")
|
117 |
+
)
|
118 |
+
model.vision["blocks"][i]["attn"]["qkv"].bias.data.copy_(
|
119 |
+
get_tensor(f"{prefix}.attn.qkv.bias")
|
120 |
+
)
|
121 |
+
model.vision["blocks"][i]["attn"]["proj"].weight.data.copy_(
|
122 |
+
get_tensor(f"{prefix}.attn.proj.weight")
|
123 |
+
)
|
124 |
+
model.vision["blocks"][i]["attn"]["proj"].bias.data.copy_(
|
125 |
+
get_tensor(f"{prefix}.attn.proj.bias")
|
126 |
+
)
|
127 |
+
|
128 |
+
# MLP
|
129 |
+
model.vision["blocks"][i]["mlp"]["fc1"].weight.data.copy_(
|
130 |
+
get_tensor(f"{prefix}.mlp.fc1.weight")
|
131 |
+
)
|
132 |
+
model.vision["blocks"][i]["mlp"]["fc1"].bias.data.copy_(
|
133 |
+
get_tensor(f"{prefix}.mlp.fc1.bias")
|
134 |
+
)
|
135 |
+
model.vision["blocks"][i]["mlp"]["fc2"].weight.data.copy_(
|
136 |
+
get_tensor(f"{prefix}.mlp.fc2.weight")
|
137 |
+
)
|
138 |
+
model.vision["blocks"][i]["mlp"]["fc2"].bias.data.copy_(
|
139 |
+
get_tensor(f"{prefix}.mlp.fc2.bias")
|
140 |
+
)
|
141 |
+
|
142 |
+
model.vision["post_ln"].weight.data.copy_(
|
143 |
+
get_tensor("vision_encoder.encoder.model.visual.norm.weight")
|
144 |
+
)
|
145 |
+
model.vision["post_ln"].bias.data.copy_(
|
146 |
+
get_tensor("vision_encoder.encoder.model.visual.norm.bias")
|
147 |
+
)
|
148 |
+
|
149 |
+
model.vision["proj_mlp"]["fc1"].weight.data.copy_(
|
150 |
+
get_tensor("vision_encoder.projection.mlp.fc1.weight")
|
151 |
+
)
|
152 |
+
model.vision["proj_mlp"]["fc1"].bias.data.copy_(
|
153 |
+
get_tensor("vision_encoder.projection.mlp.fc1.bias")
|
154 |
+
)
|
155 |
+
model.vision["proj_mlp"]["fc2"].weight.data.copy_(
|
156 |
+
get_tensor("vision_encoder.projection.mlp.fc2.weight")
|
157 |
+
)
|
158 |
+
model.vision["proj_mlp"]["fc2"].bias.data.copy_(
|
159 |
+
get_tensor("vision_encoder.projection.mlp.fc2.bias")
|
160 |
+
)
|
161 |
+
|
162 |
+
# Text Model
|
163 |
+
model.text.wte.data.copy_(get_tensor("text_model.transformer.embd.wte.weight"))
|
164 |
+
|
165 |
+
for i in range(len(model.text["blocks"])):
|
166 |
+
prefix = f"text_model.transformer.h.{i}"
|
167 |
+
|
168 |
+
# Layer norm
|
169 |
+
model.text["blocks"][i]["ln"].weight.data.copy_(
|
170 |
+
get_tensor(f"{prefix}.ln.weight")
|
171 |
+
)
|
172 |
+
model.text["blocks"][i]["ln"].bias.data.copy_(get_tensor(f"{prefix}.ln.bias"))
|
173 |
+
|
174 |
+
# Attention
|
175 |
+
model.text["blocks"][i]["attn"]["qkv"].weight.data.copy_(
|
176 |
+
get_tensor(f"{prefix}.mixer.Wqkv.weight")
|
177 |
+
)
|
178 |
+
model.text["blocks"][i]["attn"]["qkv"].bias.data.copy_(
|
179 |
+
get_tensor(f"{prefix}.mixer.Wqkv.bias")
|
180 |
+
)
|
181 |
+
model.text["blocks"][i]["attn"]["proj"].weight.data.copy_(
|
182 |
+
get_tensor(f"{prefix}.mixer.out_proj.weight")
|
183 |
+
)
|
184 |
+
model.text["blocks"][i]["attn"]["proj"].bias.data.copy_(
|
185 |
+
get_tensor(f"{prefix}.mixer.out_proj.bias")
|
186 |
+
)
|
187 |
+
|
188 |
+
# MLP
|
189 |
+
model.text["blocks"][i]["mlp"]["fc1"].weight.data.copy_(
|
190 |
+
get_tensor(f"{prefix}.mlp.fc1.weight")
|
191 |
+
)
|
192 |
+
model.text["blocks"][i]["mlp"]["fc1"].bias.data.copy_(
|
193 |
+
get_tensor(f"{prefix}.mlp.fc1.bias")
|
194 |
+
)
|
195 |
+
model.text["blocks"][i]["mlp"]["fc2"].weight.data.copy_(
|
196 |
+
get_tensor(f"{prefix}.mlp.fc2.weight")
|
197 |
+
)
|
198 |
+
model.text["blocks"][i]["mlp"]["fc2"].bias.data.copy_(
|
199 |
+
get_tensor(f"{prefix}.mlp.fc2.bias")
|
200 |
+
)
|
201 |
+
|
202 |
+
model.text["post_ln"].weight.data.copy_(get_tensor("text_model.lm_head.ln.weight"))
|
203 |
+
model.text["post_ln"].bias.data.copy_(get_tensor("text_model.lm_head.ln.bias"))
|
204 |
+
|
205 |
+
model.text["lm_head"].weight.data.copy_(
|
206 |
+
get_tensor("text_model.lm_head.linear.weight")
|
207 |
+
)
|
208 |
+
model.text["lm_head"].bias.data.copy_(get_tensor("text_model.lm_head.linear.bias"))
|
209 |
+
|
210 |
+
# Region Model
|
211 |
+
model.region.coord_features.data.copy_(
|
212 |
+
get_tensor("region_model.coordinate_features.weight").T
|
213 |
+
)
|
214 |
+
model.region["coord_encoder"].weight.data.copy_(
|
215 |
+
get_tensor("region_model.coordinate_encoder.weight")
|
216 |
+
)
|
217 |
+
model.region["coord_encoder"].bias.data.copy_(
|
218 |
+
get_tensor("region_model.coordinate_encoder.bias")
|
219 |
+
)
|
220 |
+
|
221 |
+
model.region["coord_decoder"]["fc1"].weight.data.copy_(
|
222 |
+
get_tensor("region_model.coordinate_decoder.fc1.weight")
|
223 |
+
)
|
224 |
+
model.region["coord_decoder"]["fc1"].bias.data.copy_(
|
225 |
+
get_tensor("region_model.coordinate_decoder.fc1.bias")
|
226 |
+
)
|
227 |
+
model.region["coord_decoder"]["fc2"].weight.data.copy_(
|
228 |
+
get_tensor("region_model.coordinate_decoder.fc2.weight")
|
229 |
+
)
|
230 |
+
model.region["coord_decoder"]["fc2"].bias.data.copy_(
|
231 |
+
get_tensor("region_model.coordinate_decoder.fc2.bias")
|
232 |
+
)
|
233 |
+
|
234 |
+
model.region.size_features.data.copy_(
|
235 |
+
get_tensor("region_model.size_features.weight").T
|
236 |
+
)
|
237 |
+
model.region["size_encoder"].weight.data.copy_(
|
238 |
+
get_tensor("region_model.size_encoder.weight")
|
239 |
+
)
|
240 |
+
model.region["size_encoder"].bias.data.copy_(
|
241 |
+
get_tensor("region_model.size_encoder.bias")
|
242 |
+
)
|
243 |
+
|
244 |
+
model.region["size_decoder"]["fc1"].weight.data.copy_(
|
245 |
+
get_tensor("region_model.size_decoder.fc1.weight")
|
246 |
+
)
|
247 |
+
model.region["size_decoder"]["fc1"].bias.data.copy_(
|
248 |
+
get_tensor("region_model.size_decoder.fc1.bias")
|
249 |
+
)
|
250 |
+
model.region["size_decoder"]["fc2"].weight.data.copy_(
|
251 |
+
get_tensor("region_model.size_decoder.fc2.weight")
|
252 |
+
)
|
253 |
+
model.region["size_decoder"]["fc2"].bias.data.copy_(
|
254 |
+
get_tensor("region_model.size_decoder.fc2.bias")
|
255 |
+
)
|
256 |
+
|
257 |
+
|
258 |
+
def load_weights_from_safetensors(weights_file: str, model: nn.Module) -> None:
|
259 |
+
"""Load weights from a safetensors file into a MoondreamModel instance."""
|
260 |
+
with safetensors_open(weights_file) as get_tensor:
|
261 |
+
# Wrap the get_tensor function to handle key normalization
|
262 |
+
name_map = {k.replace("._orig_mod", ""): k for k in get_tensor.keys()}
|
263 |
+
_load_weights(lambda x: get_tensor(name_map[x]).to(dtype=torch.float16), model)
|
264 |
+
|
265 |
+
|
266 |
+
def load_weights_from_pt(weights_file: str, model: nn.Module) -> None:
|
267 |
+
"""Load weights from a PyTorch file into a MoondreamModel instance."""
|
268 |
+
device = str(torch.empty(0).device)
|
269 |
+
tensors = torch.load(weights_file, map_location=device, weights_only=True)
|
270 |
+
tensors = {
|
271 |
+
k.replace("._orig_mod", ""): v.to(dtype=torch.float16)
|
272 |
+
for k, v in tensors.items()
|
273 |
+
}
|
274 |
+
_load_weights(lambda x: tensors[x], model)
|
275 |
+
|
276 |
+
|
277 |
+
def load_weights_into_model(weights_file: str, model: nn.Module) -> None:
|
278 |
+
"""
|
279 |
+
Load weights from either a safetensors or PyTorch file directly into a MoondreamModel instance.
|
280 |
+
|
281 |
+
Args:
|
282 |
+
weights_file: Path to weights file (either .safetensors or .pt)
|
283 |
+
model: MoondreamModel instance to load weights into
|
284 |
+
"""
|
285 |
+
if weights_file.endswith(".safetensors"):
|
286 |
+
load_weights_from_safetensors(weights_file, model)
|
287 |
+
else:
|
288 |
+
load_weights_from_pt(weights_file, model)
|
289 |
+
|
290 |
+
# Make all parameters contiguous
|
291 |
+
for param in model.parameters():
|
292 |
+
param.data = param.data.contiguous()
|