File size: 1,331 Bytes
514697a
 
807a876
 
514697a
c9c5839
 
 
3e5f238
 
c9c5839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
807a876
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---
license: cc-by-nc-4.0
datasets:
- clane9/NSD-Flat
---

# Model card for `boldgpt_small_patch10.cont`

![Example training predictions](example.png)

A Vision Transformer (ViT) model trained on BOLD activation maps from [NSD-Flat](https://huggingface.co/datasets/clane9/NSD-Flat). The training objective was to auto-regressively predict the next patch with shuffled patch order and MSE loss. This model was trained using `shared1000` as the held out validation set.

## Dependencies

- [boldGPT](https://github.com/clane9/boldGPT)

## Usage

```python
from boldgpt.data import ActivityTransform
from boldgpt.models import create_model
from datasets import load_dataset

model = create_model("boldgpt_small_patch10.cont", pretrained=True)

dataset = load_dataset("clane9/NSD-Flat", split="train")
dataset.set_format("torch")

transform = ActivityTransform()
batch = dataset[:1]
batch["activity"] = transform(batch["activity"])

# output: (B, N + 1, D) predicted next patches
output, state = model(batch)
```

## Reproducing

- Training command:

  ```bash
  torchrun --standalone --nproc_per_node=4 \
    scripts/train.py \
    --out_dir results \
    --model boldgpt_small_patch10 \
    --no_cat --shuffle --epochs 1000 --bs 512 \
    --workers 0 --amp --compile --wandb
  ```
- Commit: `e0b29adc8d5b3ed2f1a555d7de4754ba96a3bb3e`