codechrl commited on
Commit
24217b7
·
verified ·
1 Parent(s): e46bd87

Training update: 14,599/238,556 rows (6.12%) | +3482 new @ 2025-10-23 08:23:30

Browse files
Files changed (4) hide show
  1. README.md +5 -5
  2. model.safetensors +1 -1
  3. training_args.bin +1 -1
  4. training_metadata.json +7 -7
README.md CHANGED
@@ -25,7 +25,7 @@ pipeline_tag: fill-mask
25
  - Model type: fine-tuned lightweight BERT variant
26
  - Languages: English & Indonesia
27
  - Finetuned from: `boltuix/bert-micro`
28
- - Status: **Early version** — trained on **5.31%** of planned data.
29
  **Model sources**
30
  - Base model: [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro)
31
  - Data: Cybersecurity Data
@@ -50,7 +50,7 @@ You can use this model to classify cybersecurity-related text — for example, w
50
  - Early classification of SIEM alert & events.
51
 
52
  ## 3. Bias, Risks, and Limitations
53
- Because the model is based on a small subset (5.31%) of planned data, performance is preliminary and may degrade on unseen or specialized domains (industrial control, IoT logs, foreign language).
54
  - Inherits any biases present in the base model (`boltuix/bert-micro`) and in the fine-tuning data — e.g., over-representation of certain threat types, vendor or tooling-specific vocabulary.
55
  - **Should not be used as sole authority for incident decisions; only as an aid to human analysts.**
56
 
@@ -74,9 +74,9 @@ Since cybersecurity data often contains lengthy alert descriptions and execution
74
  - **LR scheduler**: Linear with warmup
75
 
76
  ### Training Data
77
- - **Total database rows**: 238,520
78
- - **Rows processed (cumulative)**: 12,676 (5.31%)
79
- - **Training date**: 2025-10-23 07:43:06
80
 
81
  ### Post-Training Metrics
82
  - **Final training loss**:
 
25
  - Model type: fine-tuned lightweight BERT variant
26
  - Languages: English & Indonesia
27
  - Finetuned from: `boltuix/bert-micro`
28
+ - Status: **Early version** — trained on **6.12%** of planned data.
29
  **Model sources**
30
  - Base model: [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro)
31
  - Data: Cybersecurity Data
 
50
  - Early classification of SIEM alert & events.
51
 
52
  ## 3. Bias, Risks, and Limitations
53
+ Because the model is based on a small subset (6.12%) of planned data, performance is preliminary and may degrade on unseen or specialized domains (industrial control, IoT logs, foreign language).
54
  - Inherits any biases present in the base model (`boltuix/bert-micro`) and in the fine-tuning data — e.g., over-representation of certain threat types, vendor or tooling-specific vocabulary.
55
  - **Should not be used as sole authority for incident decisions; only as an aid to human analysts.**
56
 
 
74
  - **LR scheduler**: Linear with warmup
75
 
76
  ### Training Data
77
+ - **Total database rows**: 238,556
78
+ - **Rows processed (cumulative)**: 14,599 (6.12%)
79
+ - **Training date**: 2025-10-23 08:23:30
80
 
81
  ### Post-Training Metrics
82
  - **Final training loss**:
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:68ee1fc100b841633b706f0d5222d91775561369465c8b1c96afd2cde4b55c33
3
  size 17671560
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86472796d3e4b1bb73312a0465948981442c08867a00031d1016af552cf3abc7
3
  size 17671560
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:55311dd962a4c0afe20204036e6312d1bcb507b0775ded50c5441d844c8c8238
3
  size 5905
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:529ab1fc70678f54a11dd53b3a151f93741a356a27e6add95b4915f5d610f70e
3
  size 5905
training_metadata.json CHANGED
@@ -1,11 +1,11 @@
1
  {
2
- "trained_at": 1761205386.5296822,
3
- "trained_at_readable": "2025-10-23 07:43:06",
4
- "samples_this_session": 7524,
5
- "new_rows_this_session": 2059,
6
- "trained_rows_total": 12676,
7
- "total_db_rows": 238520,
8
- "percentage": 5.314439040751299,
9
  "final_loss": 0,
10
  "epochs": 3,
11
  "learning_rate": 5e-05,
 
1
  {
2
+ "trained_at": 1761207810.4960542,
3
+ "trained_at_readable": "2025-10-23 08:23:30",
4
+ "samples_this_session": 4716,
5
+ "new_rows_this_session": 3482,
6
+ "trained_rows_total": 14599,
7
+ "total_db_rows": 238556,
8
+ "percentage": 6.119737084793508,
9
  "final_loss": 0,
10
  "epochs": 3,
11
  "learning_rate": 5e-05,