codechrl commited on
Commit
62aabfb
·
verified ·
1 Parent(s): 2530ae7

Model save

Browse files
Files changed (3) hide show
  1. README.md +39 -41
  2. model.safetensors +1 -1
  3. training_args.bin +1 -1
README.md CHANGED
@@ -1,55 +1,53 @@
1
  ---
2
- language:
3
- - en
4
- - id
5
  tags:
6
- - text-classification
7
- - cybersecurity
8
- base_model: boltuix/bert-micro
 
9
  ---
10
 
11
- # Model Card for “bert-micro-cybersecurity”
 
12
 
13
- ## 1. Model Details
14
 
15
- **Model description**
16
- “bert-micro-cybersecurity” is a compact transformer model derived from `boltuix/bert-micro`, adapted for cybersecurity text classification tasks (e.g., threat detection, incident reports, malicious vs benign content).
17
- - Model type: fine-tuned lightweight BERT variant
18
- - Languages: English & Indonesia
19
- - Finetuned from: `boltuix/bert-micro`
20
- - Status: **Early version** — trained on ~ **2%** of planned data.
21
 
22
- **Model sources**
23
- - Base model: [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro) :contentReference[oaicite:3]{index=3}
24
- - Data: Cybersecurity Data
25
 
26
- ## 2. Uses
27
 
28
- ### Direct use
29
- You can use this model to classify cybersecurity-related text — for example, whether a given message, report or log entry indicates malicious intent, abnormal behaviour, or threat presence.
30
 
31
- ### Downstream use
32
- - Embedding extraction for clustering or anomaly detection in security logs.
33
- - As part of a pipeline for phishing detection, malicious email filtering, incident triage.
34
- - As a feature extractor feeding a downstream system (e.g., alert-generation, SOC dashboard).
35
 
36
- ### Out-of-scope use
37
- - Not meant for high-stakes automated blocking decisions without human review.
38
- - Not optimized for languages other than English.
39
- - Not tested for non-cybersecurity domains or out-of-distribution data.
40
 
41
- ## 3. Bias, Risks, and Limitations
42
- Because the model is based on a very small subset (~ 2%) of planned data, performance is preliminary and may degrade on unseen or specialized domains (industrial control, IoT logs, foreign language).
43
- - Inherits any biases present in the base model (`boltuix/bert-micro`) and in the fine-tuning data — e.g., over-representation of certain threat types, vendor or tooling-specific vocabulary. :contentReference[oaicite:4]{index=4}
44
- - Should not be used as sole authority for incident decisions; only as an aid to human analysts.
45
 
46
- ## 4. How to Get Started with the Model
47
- ```python
48
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
49
- tokenizer = AutoTokenizer.from_pretrained("your-username/bert-micro-cybersecurity")
50
- model = AutoModelForSequenceClassification.from_pretrained("your-username/bert-micro-cybersecurity")
51
 
52
- inputs = tokenizer("The server logged an unusual outbound connection to 123.123.123.123", return_tensors="pt", truncation=True, padding=True)
53
- outputs = model(**inputs)
54
- logits = outputs.logits
55
- predicted_class = logits.argmax(dim=-1).item()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: transformers
3
+ base_model: codechrl/bert-micro-cybersecurity
 
4
  tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: bert-micro-cybersecurity
8
+ results: []
9
  ---
10
 
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
 
14
+ # bert-micro-cybersecurity
15
 
16
+ This model is a fine-tuned version of [codechrl/bert-micro-cybersecurity](https://huggingface.co/codechrl/bert-micro-cybersecurity) on the None dataset.
 
 
 
 
 
17
 
18
+ ## Model description
 
 
19
 
20
+ More information needed
21
 
22
+ ## Intended uses & limitations
 
23
 
24
+ More information needed
 
 
 
25
 
26
+ ## Training and evaluation data
 
 
 
27
 
28
+ More information needed
 
 
 
29
 
30
+ ## Training procedure
 
 
 
 
31
 
32
+ ### Training hyperparameters
33
+
34
+ The following hyperparameters were used during training:
35
+ - learning_rate: 5e-05
36
+ - train_batch_size: 8
37
+ - eval_batch_size: 8
38
+ - seed: 42
39
+ - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
40
+ - lr_scheduler_type: linear
41
+ - lr_scheduler_warmup_ratio: 0.06
42
+ - num_epochs: 3
43
+
44
+ ### Training results
45
+
46
+
47
+
48
+ ### Framework versions
49
+
50
+ - Transformers 4.57.0
51
+ - Pytorch 2.8.0+cu128
52
+ - Datasets 4.2.0
53
+ - Tokenizers 0.22.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:873dd9ce370e9fd561cba1d3c713e806e31c4b54585edf06cf940b25a5a33bed
3
  size 17671560
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:771d455ace0a6fd55c4819322b1388568b18b10da0527b804a55eaa36d811c01
3
  size 17671560
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e7bb591ef4b3eb244b42ddcabd8e4d0914fb1e5705cfabb1514c3b55118856a4
3
  size 5841
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:084656c8a1292904b005795f8f0538fe567f1dc4776d4e210711e623b4041f7b
3
  size 5841