Training update: 6,737/238,451 rows (2.83%) | +26 new @ 2025-10-23 02:35:06
Browse files- README.md +8 -15
- config.json +1 -1
- model.safetensors +1 -1
- training_args.bin +1 -1
- training_metadata.json +7 -7
README.md
CHANGED
|
@@ -9,60 +9,53 @@ tags:
|
|
| 9 |
- cybersecurity
|
| 10 |
- fill-mask
|
| 11 |
- named-entity-recognition
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
base_model: boltuix/bert-micro
|
| 13 |
library_name: transformers
|
|
|
|
| 14 |
---
|
| 15 |
# bert-micro-cybersecurity
|
| 16 |
-
|
| 17 |
## 1. Model Details
|
| 18 |
**Model description**
|
| 19 |
"bert-micro-cybersecurity" is a compact transformer model adapted for cybersecurity text classification tasks (e.g., threat detection, incident reports, malicious vs benign content).
|
| 20 |
-
|
| 21 |
- Model type: fine-tuned lightweight BERT variant
|
| 22 |
- Languages: English & Indonesia
|
| 23 |
- Finetuned from: `boltuix/bert-micro`
|
| 24 |
-
- Status: **Early version** — trained on **2.
|
| 25 |
-
|
| 26 |
**Model sources**
|
| 27 |
- Base model: [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro)
|
| 28 |
- Data: Cybersecurity Data
|
| 29 |
-
|
| 30 |
## 2. Uses
|
| 31 |
### Direct use
|
| 32 |
You can use this model to classify cybersecurity-related text — for example, whether a given message, report or log entry indicates malicious intent, abnormal behaviour, or threat presence.
|
| 33 |
-
|
| 34 |
### Downstream use
|
| 35 |
- Embedding extraction for clustering or anomaly detection in security logs.
|
| 36 |
- As part of a pipeline for phishing detection, malicious email filtering, incident triage.
|
| 37 |
- As a feature extractor feeding a downstream system (e.g., alert-generation, SOC dashboard).
|
| 38 |
-
|
| 39 |
### Out-of-scope use
|
| 40 |
- Not meant for high-stakes automated blocking decisions without human review.
|
| 41 |
- Not optimized for languages other than English and Indonesian.
|
| 42 |
- Not tested for non-cybersecurity domains or out-of-distribution data.
|
| 43 |
-
|
| 44 |
## 3. Bias, Risks, and Limitations
|
| 45 |
-
Because the model is based on a small subset (2.
|
| 46 |
-
|
| 47 |
- Inherits any biases present in the base model (`boltuix/bert-micro`) and in the fine-tuning data — e.g., over-representation of certain threat types, vendor or tooling-specific vocabulary.
|
| 48 |
- Should not be used as sole authority for incident decisions; only as an aid to human analysts.
|
| 49 |
-
|
| 50 |
## 4. How to Get Started with the Model
|
| 51 |
```python
|
| 52 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 53 |
-
|
| 54 |
tokenizer = AutoTokenizer.from_pretrained("codechrl/bert-micro-cybersecurity")
|
| 55 |
model = AutoModelForSequenceClassification.from_pretrained("codechrl/bert-micro-cybersecurity")
|
| 56 |
-
|
| 57 |
inputs = tokenizer("The server logged an unusual outbound connection to 123.123.123.123",
|
| 58 |
return_tensors="pt", truncation=True, padding=True)
|
| 59 |
outputs = model(**inputs)
|
| 60 |
logits = outputs.logits
|
| 61 |
predicted_class = logits.argmax(dim=-1).item()
|
| 62 |
```
|
| 63 |
-
|
| 64 |
## 5. Training Details
|
| 65 |
-
- **Trained records**: 6,
|
| 66 |
- **Learning rate**: 5e-05
|
| 67 |
- **Epochs**: 3
|
| 68 |
- **Batch size**: 16
|
|
|
|
| 9 |
- cybersecurity
|
| 10 |
- fill-mask
|
| 11 |
- named-entity-recognition
|
| 12 |
+
- transformers
|
| 13 |
+
- tensorflow
|
| 14 |
+
- pytorch
|
| 15 |
+
- masked-language-modeling
|
| 16 |
base_model: boltuix/bert-micro
|
| 17 |
library_name: transformers
|
| 18 |
+
pipeline_tag: fill-mask
|
| 19 |
---
|
| 20 |
# bert-micro-cybersecurity
|
|
|
|
| 21 |
## 1. Model Details
|
| 22 |
**Model description**
|
| 23 |
"bert-micro-cybersecurity" is a compact transformer model adapted for cybersecurity text classification tasks (e.g., threat detection, incident reports, malicious vs benign content).
|
|
|
|
| 24 |
- Model type: fine-tuned lightweight BERT variant
|
| 25 |
- Languages: English & Indonesia
|
| 26 |
- Finetuned from: `boltuix/bert-micro`
|
| 27 |
+
- Status: **Early version** — trained on **2.83%** of planned data.
|
|
|
|
| 28 |
**Model sources**
|
| 29 |
- Base model: [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro)
|
| 30 |
- Data: Cybersecurity Data
|
|
|
|
| 31 |
## 2. Uses
|
| 32 |
### Direct use
|
| 33 |
You can use this model to classify cybersecurity-related text — for example, whether a given message, report or log entry indicates malicious intent, abnormal behaviour, or threat presence.
|
|
|
|
| 34 |
### Downstream use
|
| 35 |
- Embedding extraction for clustering or anomaly detection in security logs.
|
| 36 |
- As part of a pipeline for phishing detection, malicious email filtering, incident triage.
|
| 37 |
- As a feature extractor feeding a downstream system (e.g., alert-generation, SOC dashboard).
|
|
|
|
| 38 |
### Out-of-scope use
|
| 39 |
- Not meant for high-stakes automated blocking decisions without human review.
|
| 40 |
- Not optimized for languages other than English and Indonesian.
|
| 41 |
- Not tested for non-cybersecurity domains or out-of-distribution data.
|
|
|
|
| 42 |
## 3. Bias, Risks, and Limitations
|
| 43 |
+
Because the model is based on a small subset (2.83%) of planned data, performance is preliminary and may degrade on unseen or specialized domains (industrial control, IoT logs, foreign language).
|
|
|
|
| 44 |
- Inherits any biases present in the base model (`boltuix/bert-micro`) and in the fine-tuning data — e.g., over-representation of certain threat types, vendor or tooling-specific vocabulary.
|
| 45 |
- Should not be used as sole authority for incident decisions; only as an aid to human analysts.
|
|
|
|
| 46 |
## 4. How to Get Started with the Model
|
| 47 |
```python
|
| 48 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
|
| 49 |
tokenizer = AutoTokenizer.from_pretrained("codechrl/bert-micro-cybersecurity")
|
| 50 |
model = AutoModelForSequenceClassification.from_pretrained("codechrl/bert-micro-cybersecurity")
|
|
|
|
| 51 |
inputs = tokenizer("The server logged an unusual outbound connection to 123.123.123.123",
|
| 52 |
return_tensors="pt", truncation=True, padding=True)
|
| 53 |
outputs = model(**inputs)
|
| 54 |
logits = outputs.logits
|
| 55 |
predicted_class = logits.argmax(dim=-1).item()
|
| 56 |
```
|
|
|
|
| 57 |
## 5. Training Details
|
| 58 |
+
- **Trained records**: 6,737 / 238,451 (2.83%)
|
| 59 |
- **Learning rate**: 5e-05
|
| 60 |
- **Epochs**: 3
|
| 61 |
- **Batch size**: 16
|
config.json
CHANGED
|
@@ -17,7 +17,7 @@
|
|
| 17 |
"num_hidden_layers": 2,
|
| 18 |
"pad_token_id": 0,
|
| 19 |
"position_embedding_type": "absolute",
|
| 20 |
-
"transformers_version": "4.57.
|
| 21 |
"type_vocab_size": 2,
|
| 22 |
"use_cache": true,
|
| 23 |
"vocab_size": 30522
|
|
|
|
| 17 |
"num_hidden_layers": 2,
|
| 18 |
"pad_token_id": 0,
|
| 19 |
"position_embedding_type": "absolute",
|
| 20 |
+
"transformers_version": "4.57.0",
|
| 21 |
"type_vocab_size": 2,
|
| 22 |
"use_cache": true,
|
| 23 |
"vocab_size": 30522
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 17671560
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:487e4f9052c100978689e6eade446eeda6f4c8fba1363b7a582d6079bb33374a
|
| 3 |
size 17671560
|
training_args.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 5905
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1f36e9bc24f3f3fbc56bfa76ad08bf8c96c15d398a5d494f6e83bfb7fc0d9d52
|
| 3 |
size 5905
|
training_metadata.json
CHANGED
|
@@ -1,11 +1,11 @@
|
|
| 1 |
{
|
| 2 |
-
"trained_at":
|
| 3 |
-
"trained_at_readable": "2025-10-23
|
| 4 |
-
"samples_this_session":
|
| 5 |
-
"new_rows_this_session":
|
| 6 |
-
"trained_rows_total":
|
| 7 |
-
"total_db_rows":
|
| 8 |
-
"percentage": 2.
|
| 9 |
"final_loss": 0,
|
| 10 |
"epochs": 3,
|
| 11 |
"learning_rate": 5e-05
|
|
|
|
| 1 |
{
|
| 2 |
+
"trained_at": 1761186906.6386719,
|
| 3 |
+
"trained_at_readable": "2025-10-23 02:35:06",
|
| 4 |
+
"samples_this_session": 26,
|
| 5 |
+
"new_rows_this_session": 26,
|
| 6 |
+
"trained_rows_total": 6737,
|
| 7 |
+
"total_db_rows": 238451,
|
| 8 |
+
"percentage": 2.825318409232924,
|
| 9 |
"final_loss": 0,
|
| 10 |
"epochs": 3,
|
| 11 |
"learning_rate": 5e-05
|