Delete best_int8_openvino_model/best_int8_openvino_model/app.py
Browse files
best_int8_openvino_model/best_int8_openvino_model/app.py
DELETED
@@ -1,109 +0,0 @@
|
|
1 |
-
from ultralytics import YOLO
|
2 |
-
import cv2
|
3 |
-
import gradio as gr
|
4 |
-
from PIL import Image
|
5 |
-
from huggingface_hub import snapshot_download
|
6 |
-
import os
|
7 |
-
import numpy as np
|
8 |
-
|
9 |
-
# Model path and loading function
|
10 |
-
model_path = "/Users/LeeTM/Downloads/best_int8_openvino_model"
|
11 |
-
|
12 |
-
def load_model(repo_id):
|
13 |
-
print("Loading model, please wait...")
|
14 |
-
download_dir = snapshot_download(repo_id)
|
15 |
-
path = os.path.join(download_dir, "best_int8_openvino_model")
|
16 |
-
detection_model = YOLO(path, task='detect')
|
17 |
-
return detection_model
|
18 |
-
|
19 |
-
def process_image(pilimg):
|
20 |
-
# Default values for confidence and IOU
|
21 |
-
conf = 0.7 # Confidence threshold
|
22 |
-
iou = 0.7 # IOU threshold
|
23 |
-
|
24 |
-
# Apply the YOLOv8 model for object detection
|
25 |
-
result = detection_model.predict(pilimg, conf=conf, iou=iou)
|
26 |
-
|
27 |
-
# Plot the results (bounding boxes) on the image
|
28 |
-
img_bgr = result[0].plot() # This will draw the bounding boxes
|
29 |
-
out_pilimg = Image.fromarray(img_bgr[..., ::-1]) # Convert to RGB-order PIL image
|
30 |
-
|
31 |
-
# Collect labels and confidences for the detected objects
|
32 |
-
labels = [detection_model.names[int(det.cls)] for det in result[0].boxes]
|
33 |
-
confidences = [f"{float(det.conf):.2f}" for det in result[0].boxes]
|
34 |
-
|
35 |
-
detection_details = "\n".join([f"{label}: {conf}" for label, conf in zip(labels, confidences)])
|
36 |
-
|
37 |
-
return out_pilimg, detection_details
|
38 |
-
|
39 |
-
def process_video(video_path):
|
40 |
-
# Default values for confidence and IOU
|
41 |
-
conf = 0.7 # Confidence threshold
|
42 |
-
iou = 0.7 # IOU threshold
|
43 |
-
|
44 |
-
cap = cv2.VideoCapture(video_path)
|
45 |
-
|
46 |
-
# Get video details
|
47 |
-
frame_width = int(cap.get(3))
|
48 |
-
frame_height = int(cap.get(4))
|
49 |
-
fps = int(cap.get(5))
|
50 |
-
|
51 |
-
# Output video settings
|
52 |
-
out_path = "output_video.mp4"
|
53 |
-
out = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (frame_width, frame_height))
|
54 |
-
|
55 |
-
while cap.isOpened():
|
56 |
-
ret, frame = cap.read()
|
57 |
-
if not ret:
|
58 |
-
break
|
59 |
-
|
60 |
-
# Convert the frame to a PIL image (YOLO uses RGB format)
|
61 |
-
pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
62 |
-
|
63 |
-
# Apply the YOLOv8 model for object detection
|
64 |
-
result = detection_model.predict(pil_img, conf=conf, iou=iou)
|
65 |
-
|
66 |
-
# Plot the results (bounding boxes) on the frame
|
67 |
-
img_bgr = result[0].plot() # This will draw the bounding boxes
|
68 |
-
frame_bgr = cv2.cvtColor(np.array(img_bgr), cv2.COLOR_RGB2BGR)
|
69 |
-
|
70 |
-
# Write the processed frame to the output video
|
71 |
-
out.write(frame_bgr)
|
72 |
-
|
73 |
-
cap.release()
|
74 |
-
out.release()
|
75 |
-
|
76 |
-
return None, out_path # Return None for image, and video path for the video output
|
77 |
-
|
78 |
-
# Model Repository
|
79 |
-
REPO_ID = "crimson78/pokemon_ash_pikachu_yolov8"
|
80 |
-
detection_model = load_model(REPO_ID)
|
81 |
-
|
82 |
-
# Gradio Interface
|
83 |
-
def detect_objects(input_file):
|
84 |
-
# Check if the input is a video or an image
|
85 |
-
if input_file.endswith(('.mp4', '.mov', '.avi', '.mkv')):
|
86 |
-
# Process as video and return None for image
|
87 |
-
return process_video(input_file)
|
88 |
-
else:
|
89 |
-
# Process as image and return video as None
|
90 |
-
pil_img = Image.open(input_file)
|
91 |
-
return process_image(pil_img)
|
92 |
-
|
93 |
-
# Gradio Interface
|
94 |
-
gui = gr.Interface(
|
95 |
-
fn=detect_objects,
|
96 |
-
inputs=[
|
97 |
-
gr.File(label="Upload an Image or Video", type="filepath"), # File input (both image and video supported)
|
98 |
-
],
|
99 |
-
outputs=[
|
100 |
-
gr.Image(type="pil", label="Detection Results"), # Image output for images
|
101 |
-
gr.Video(label="Detection Results") # Video output for videos
|
102 |
-
],
|
103 |
-
title="YOLO Object Detection",
|
104 |
-
description="Upload an image or video, and the model will automatically detect objects using the YOLO model. The confidence and IOU thresholds are fixed and cannot be adjusted.",
|
105 |
-
flagging_mode='never' # Use flagging_mode as never
|
106 |
-
)
|
107 |
-
|
108 |
-
# Launch the Gradio app with a public link
|
109 |
-
gui.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|