File size: 2,575 Bytes
8fdcf9c cadcedb 29906cf c3424da 29906cf 8fdcf9c 29906cf 8fdcf9c 29906cf 8fdcf9c 29906cf 8fdcf9c 29906cf 8fdcf9c 29906cf 8fdcf9c 29906cf 8fdcf9c 29906cf 8fdcf9c 29906cf 8fdcf9c 29906cf 8fdcf9c 29906cf 8fdcf9c 29906cf 8fdcf9c 29906cf 8fdcf9c 29906cf 8fdcf9c 29906cf 8fdcf9c 29906cf 8fdcf9c 29906cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
---
tags:
- pytorch
- safetensors
- transformers
- gpt-oss
- multilingual
- text-generation
language:
- en
- es
- fr
- de
- it
- pt
license: apache-2.0
model_type: gpt-oss
pipeline_tag: text-generation
base_model: openai/gpt-oss-20b
---
# GPT-OSS-20B Function Calling Model
This repository contains the GPT-OSS-20B model fine-tuned on function calling data in PyTorch/Safetensors format, ready for use with the Transformers library.
## Model Details
- **Base Model:** openai/gpt-oss-20b
- **Fine-tuning Dataset:** Salesforce/xlam-function-calling-60k (2000 samples)
- **Fine-tuning Method:** LoRA (r=8, alpha=16)
- **Context Length:** 131,072 tokens
- **Model Size:** 20B parameters
## Files
- `model.safetensors`: Model weights in Safetensors format
- `config.json`: Model configuration
- `tokenizer.json`, `tokenizer_config.json`: Tokenizer files
- `generation_config.json`: Generation configuration
## Usage
### With Transformers Library
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
"cuijian0819/gpt-oss-20b-function-calling",
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("cuijian0819/gpt-oss-20b-function-calling")
# Generate text
inputs = tokenizer("Your prompt here", return_tensors="pt")
outputs = model.generate(**inputs, max_length=100, temperature=0.7)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
```
### Fine-tuning
This model can be further fine-tuned using standard PyTorch/Transformers workflows:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
model = AutoModelForCausalLM.from_pretrained("cuijian0819/gpt-oss-20b-function-calling")
tokenizer = AutoTokenizer.from_pretrained("cuijian0819/gpt-oss-20b-function-calling")
# Your fine-tuning code here
```
## GGUF Version
For efficient inference with llama.cpp or Ollama, check out the GGUF version: [cuijian0819/gpt-oss-20b-function-calling-gguf](https://huggingface.co/cuijian0819/gpt-oss-20b-function-calling-gguf)
## Training Details
- **Training Epochs:** 5
- **Learning Rate:** 0.0002
- **Batch Size:** 4
- **Gradient Accumulation:** 4
- **Max Length:** 1024
## License
This model inherits the license from the base openai/gpt-oss-20b model.
## Citation
```bibtex
@misc{gpt-oss-20b-function-calling,
title={GPT-OSS-20B Function Calling Model},
author={cuijian0819},
year={2025},
url={https://huggingface.co/cuijian0819/gpt-oss-20b-function-calling}
}
```
|